## **Classification Trees**

- Can be used with classification problems with 2 or more categories
- The tree is grown (and the splits are chosen) the same way as with a regression tree
- For a regression tree the performance measure is SSE
- For a classification tree the performance measure is the accuracy rate (AR)
- There are other performance measures





- Split the predictors space into regions
- A region is pure if all observations belong to the same category
- For each region, the prediction is equal to the most common category in the region

- Response with K = 3 categories (classes)
- $p_{mi}$  proportion of observations from category i in region m
- For region 4

$$\hat{p}_{41} = 10\%$$
 members from class 1  
 $\hat{p}_{42} = 20\%$  class 2  
 $\hat{p}_{43} = 70\%$  class 3

- if a new observation falls in region 4, prediction is  $\hat{y}_4 = 3$
- error rate for region 4 is  $e_4 = 0.3$

## **Classification Trees**

- Overall error rate on all T regions is  $E = \sum_{j=1}^{T} \frac{n_j}{n} \, e_j$
- Other measures of performance are
  - Gini index
  - Cross entropy
- They are called measures of impurity
- If the region is pure, all are equal to zero

## Classification Trees – Measures of Impurity

- E: classification error rate

$$E = \sum_{m=1}^{T} \frac{n_m}{n} e_m$$

- G: Gini Index

$$G = \sum_{m=1}^{T} \left[ 1 - \sum_{i=1}^{K} p_{im}^{2} \right]$$

D: Cross entropy

$$\int D = \sum_{m=1}^{T} \left[ \sum_{i=1}^{K} p_{im} \, \log_2(p_{im}) \, \right]$$

where  $p_{im}$  is the proportion of observations from category i in region m

## Classification Trees – Store sales Example



### Classification Trees - Store sales Example



## Classification Trees – Store sales Example



## Classification Trees - Decision Tree with entropy



## Gini Index

## left leaf node

gini index is

$$G = \sum_{m=1}^{T} \left[ 1 - \sum_{i=1}^{K} p_{im}^{2} \right]$$

gini = 0.482 samples = 32 value = [13, 19] class = 1

## **Entropy**

## left leaf node

entropy is

$$D = \sum_{m=1}^{T} \left[ \sum_{i=1}^{K} p_{im} \log_2(p_{im}) \right]$$

entropy = 0.966 samples = 107 value = [65, 42] class = 0

## **Classification Trees**

# Example – Carseats data

## **Classification Trees**

- The *Carseats* dataset contains the sales of child car seats from 400 stores in different locations in the US
- It includes 10 features
- The response is *Sales*

## **Carseats** variables

Sales Unit sales (in thousands) at each location

CompPrice Price charged by competitor at each location

Income Community income level (in thousands of dollars)

Advertising Local advertising budget for company at each location (in thousands of dollars)

Population Population size in region (in thousands)

Price Price company charges for car seats at each site

ShelveLoc A factor with levels Bad, Good and Medium indicating the quality of the shelving location for the car seats at each site

Age Average age of the local population

Education Education level at each location

Urban A factor with levels No and Yes to indicate whether the store is in an urban or rural location

US A factor with levels No and Yes to indicate whether the store is in the US or not

#### **Carseats** data - categorical variables

Sales Unit sales (in thousands) at each location

CompPrice Price charged by competitor at each location

Income Community income level (in thousands of dollars)

Advertising Local advertising budget for company at each location (in thousands of dollars)

Population Population size in region (in thousands)

Price Price company charges for car seats at each site

ShelveLoc A factor with levels Bad, Good and Medium indicating the quality of the shelving location for the car seats at each site

Age Average age of the local population

Education Education level at each location

Urban A factor with levels No and Yes to indicate whether the store is in an urban or rural location

US A factor with levels No and Yes to indicate whether the store is in the US or not

- It is of interest to predict if the Sales of a store are high (more than 8000 seats) or low
- Transform Sales into a new categorical response High
- Which variables are most useful to predict High sales?

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model selection import KFold, cross val score
from sklearn.model selection import train test split
from sklearn.metrics import mean squared error
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import GridSearchCV
from sklearn.tree import export graphviz
import graphviz
import pydotplus
from IPython.display import Image
```

df0 = pd.read\_csv('Carseats.csv')
df0[:9]

| _ | _ |
|---|---|
| • | _ |
| • | _ |
|   |   |
|   |   |

|   | Sales | CompPrice | Income | Advertising | Population | Price | ShelveLoc | Age | Education | Urban | US  |
|---|-------|-----------|--------|-------------|------------|-------|-----------|-----|-----------|-------|-----|
| 0 | 9.50  | 138       | 73     | 11          | 276        | 120   | Bad       | 42  | 17        | Yes   | Yes |
| 1 | 11.22 | 111       | 48     | 16          | 260        | 83    | Good      | 65  | 10        | Yes   | Yes |
| 2 | 10.06 | 113       | 35     | 10          | 269        | 80    | Medium    | 59  | 12        | Yes   | Yes |
| 3 | 7.40  | 117       | 100    | 4           | 466        | 97    | Medium    | 55  | 14        | Yes   | Yes |
| 4 | 4.15  | 141       | 64     | 3           | 340        | 128   | Bad       | 38  | 13        | Yes   | No  |
| 5 | 10.81 | 124       | 113    | 13          | 501        | 72    | Bad       | 78  | 16        | No    | Yes |
| 6 | 6.63  | 115       | 105    | 0           | 45         | 108   | Medium    | 71  | 15        | Yes   | No  |
| 7 | 11.85 | 136       | 81     | 15          | 425        | 120   | Good      | 67  | 10        | Yes   | Yes |
| 8 | 6.54  | 132       | 110    | 0           | 108        | 124   | Medium    | 76  | 10        | No    | No  |

df0 = pd.read\_csv('Carseats.csv')
df0[:9]

categorical variable

categorical variables

with 3 categories

with 2 categories

|   |       |           |        |             |            |       |           |     | 3         |       |     |
|---|-------|-----------|--------|-------------|------------|-------|-----------|-----|-----------|-------|-----|
|   | Sales | CompPrice | Income | Advertising | Population | Price | ShelveLoc | Age | Education | Urban | US  |
| 0 | 9.50  | 138       | 73     | 11          | 276        | 120   | Bad       | 42  | 17        | Yes   | Yes |
| 1 | 11.22 | 111       | 48     | 16          | 260        | 83    | Good      | 65  | 10        | Yes   | Yes |
| 2 | 10.06 | 113       | 35     | 10          | 269        | 80    | Medium    | 59  | 12        | Yes   | Yes |
| 3 | 7.40  | 117       | 100    | 4           | 466        | 97    | Medium    | 55  | 14        | Yes   | Yes |
| 4 | 4.15  | 141       | 64     | 3           | 340        | 128   | Bad       | 38  | 13        | Yes   | No  |
| 5 | 10.81 | 124       | 113    | 13          | 501        | 72    | Bad       | 78  | 16        | No    | Yes |
| 6 | 6.63  | 115       | 105    | 0           | 45         | 108   | Medium    | 71  | 15        | Yes   | No  |
| 7 | 11.85 | 136       | 81     | 15          | 425        | 120   | Good      | 67  | 10        | Yes   | Yes |
| 8 | 6.54  | 132       | 110    | 0           | 108        | 124   | Medium    | 76  | 10        | No    | No  |

## Classification Trees - Convert categorical features into binary columns

```
df1 = pd.get_dummies(df0,columns=['Shelve','Urban','US'])
df1 = df1.drop(['Shelve_Bad','Urban_No','US_No'],axis=1)
df1[:4]
```

|   | Sales | CompPrice | Income | Advertising | Population | Price | Age | Education | Shelve_Good | Shelve_Medium | Urban_Yes | US_Yes |
|---|-------|-----------|--------|-------------|------------|-------|-----|-----------|-------------|---------------|-----------|--------|
| 0 | 9.50  | 138       | 73     | 11          | 276        | 120   | 42  | 17        | 0           | 0             | 1         | 1      |
| 1 | 11.22 | 111       | 48     | 16          | 260        | 83    | 65  | 10        | 1           | 0             | 1         | 1      |
| 2 | 10.06 | 113       | 35     | 10          | 269        | 80    | 59  | 12        | 0           | 1             | 1         | 1      |
| 3 | 7.40  | 117       | 100    | 4           | 466        | 97    | 55  | 14        | 0           | 1             | 1         | 1      |
| 4 | 4.15  | 141       | 64     | 3           | 340        | 128   | 38  | 13        | 0           | 0             | 1         | 0      |

## Classification Trees - Create categorical response High

```
df1['High'] = (df1.Sales > 8)
df1[:6]
```

|   | Sales | CompPrice | Income | Advertising | Population | Price | Age | Education | Shelve_Good | Shelve_Medium | Urban_Yes | US_Yes | High  |
|---|-------|-----------|--------|-------------|------------|-------|-----|-----------|-------------|---------------|-----------|--------|-------|
| 0 | 9.50  | 138       | 73     | 11          | 276        | 120   | 42  | 17        | 0           | 0             | 1         | 1      | True  |
| 1 | 11.22 | 111       | 48     | 16          | 260        | 83    | 65  | 10        | 1           | 0             | 1         | 1      | True  |
| 2 | 10.06 | 113       | 35     | 10          | 269        | 80    | 59  | 12        | 0           | 1             | 1         | 1      | True  |
| 3 | 7.40  | 117       | 100    | 4           | 466        | 97    | 55  | 14        | 0           | 1             | 1         | 1      | False |
| 4 | 4.15  | 141       | 64     | 3           | 340        | 128   | 38  | 13        | 0           | 0             | 1         | 0      | False |
| 5 | 10.81 | 124       | 113    | 13          | 501        | 72    | 78  | 16        | 0           | 0             | 0         | 1      | True  |

## Classification Trees - Create categorical response High

df1['High'] = (df1.Sales > 8).astype(np.int32)
df1[:6]

|   | Sales | CompPrice | Income | Advertising | Population | Price | Age | Education | Shelve_Good | Shelve_Medium | Urban_Yes | US_Yes | High |
|---|-------|-----------|--------|-------------|------------|-------|-----|-----------|-------------|---------------|-----------|--------|------|
| 0 | 9.50  | 138       | 73     | 11          | 276        | 120   | 42  | 17        | 0           | 0             | 1         | 1      | 1    |
| 1 | 11.22 | 111       | 48     | 16          | 260        | 83    | 65  | 10        | 1           | 0             | 1         | 1      | 1    |
| 2 | 10.06 | 113       | 35     | 10          | 269        | 80    | 59  | 12        | 0           | 1             | 1         | 1      | 1    |
| 3 | 7.40  | 117       | 100    | 4           | 466        | 97    | 55  | 14        | 0           | 1             | 1         | 1      | 0    |
| 4 | 4.15  | 141       | 64     | 3           | 340        | 128   | 38  | 13        | 0           | 0             | 1         | 0      | 0    |
| 5 | 10.81 | 124       | 113    | 13          | 501        | 72    | 78  | 16        | 0           | 0             | 0         | 1      | 1    |

|   | Sales | CompPrice | Income | Advertising | Population | Price | Age | Education | Shelve_Good | Shelve_Medium | Urban_Yes | US_Yes | High |
|---|-------|-----------|--------|-------------|------------|-------|-----|-----------|-------------|---------------|-----------|--------|------|
| 0 | 9.50  | 138       | 73     | 11          | 276        | 120   | 42  | 17        | 0           | 0             | 1         | 1      | 1    |
| 1 | 11.22 | 111       | 48     | 16          | 260        | 83    | 65  | 10        | 1           | 0             | 1         | 1      | 1    |
| 2 | 10.06 | 113       | 35     | 10          | 269        | 80    | 59  | 12        | 0           | 1             | 1         | 1      | 1    |
| 3 | 7.40  | 117       | 100    | 4           | 466        | 97    | 55  | 14        | 0           | 1             | 1         | 1      | 0    |
| 4 | 4.15  | 141       | 64     | 3           | 340        | 128   | 38  | 13        | 0           | 0             | 1         | 0      | 0    |

```
y = df1.High
X = df1.drop(['Sales', 'High'], axis = 1)
X[:3]
```

- keep categorical response in *y*
- drop both responses

|   | CompPrice | Income | Advertising | Population | Price | Age | Education | Shelve_Good | Shelve_Medium | Urban_Yes | US_Yes |
|---|-----------|--------|-------------|------------|-------|-----|-----------|-------------|---------------|-----------|--------|
| 0 | 138       | 73     | 11          | 276        | 120   | 42  | 17        | 0           | 0             | 1         | 1      |
| 1 | 111       | 48     | 16          | 260        | 83    | 65  | 10        | 1           | 0             | 1         | 1      |
| 2 | 113       | 35     | 10          | 269        | 80    | 59  | 12        | 0           | 1             | 1         | 1      |

## Split dataset

### $max_depth = 2$

```
model1 = DecisionTreeClassifier(criterion='entropy',max_depth = 2)
model1.fit(X_train, y_train)
yhat = model1.predict(X_test)
model1.score(X_test, y_test)
```

0.66

```
model2 = DecisionTreeClassifier(criterion='gini', max_depth = 2)
model2.fit(X_train, y_train)
yhat = model2.predict(X_test)
model2.score(X_test, y_test)
0.7
pd.crosstab(y_test,yhat,rownames = ['y_test'],colnames = ['yhat'])
 yhat
        0 1
y_test
    0 104 14
       46 36
                        test accuracy rate
                        (104 + 36) / 200 = 0.7
```

## Classification Trees - Decision Tree with entropy



## Classification Trees – Decision Tree with gini index







Shelve Good <= 0.5



| <br>CompPrice | Income | Advertising | Population | Price | Age | Education | Shelve_Good | Shelve_Medium | Urban_Yes | US_Yes |
|---------------|--------|-------------|------------|-------|-----|-----------|-------------|---------------|-----------|--------|
| 138           | 73     | 11          | 276        | 120   | 42  | 17        | 0           | 0             | 1         | 1      |



## Test accuracy rate

#### $max_depth = 2$

```
model2 = DecisionTreeClassifier(max_depth = 2)
model2.fit(X_train, y_train)
model2.score(X_test, y_test)
```

#### 0.7

#### $max_depth = 4$

```
model4 = DecisionTreeClassifier(max_depth = 4)
model4.fit(X_train, y_train)
model4.score(X_test, y_test)
```

0.74

## Classification Trees (max\_depth = 4)



#### Classification Trees (max\_depth = 4)



#### Classification Trees – Pure nodes



Cesar Acosta Ph.D.



# Holdout Cross Validation

#### Test accuracy rate

#### $max_depth = 2$

```
model2 = DecisionTreeClassifier(max_depth = 2)
model2.fit(X_train, y_train)
model2.score(X_test, y_test)
```

#### 0.7

#### $max_depth = 4$

```
model4 = DecisionTreeClassifier(max_depth = 4)
model4.fit(X_train, y_train)
model4.score(X_test, y_test)
```

#### Classification Trees - Select best value for max\_depth

#### $max_depth = 2$

```
model2 = DecisionTreeClassifier(max_depth = 2)
model2.fit(X_train, y_train)
model2.score(X_test, y_test)
```

0.7

```
model = DecisionTreeClassifier(random_state=1)
accuracy = []
```

```
for i in range(2,22):
    model.set_params(max_depth = i)
    model.fit(X_train, y_train)
    acc = model.score(X_test, y_test)
    accuracy.append(acc)
```

```
print(accuracy)
```

[0.7, 0.705, 0.72, 0.75, 0.735, 0.75, 0.71, 0.76,

#### Holdout CV to find best value for max\_depth

#### Holdout CV to find best value for max\_depth

```
df = pd.DataFrame(accuracy,columns = ['Val_Accuracy'])
                                                                                             Val Accuracy
df.index = depths
df.index.name = 'depth'
                                                                                       depth
df[:11]
                                                                                                 0.691667
                                                                                          2
                              max1 = df['Val_Accuracy'].max()
                              max1
                                                                                          3
                                                                                                 0.716667
                              0.7416666666666667
                                                                                                 0.741667
                                                                                                 0.716667
                                                                                          5
                              df[df.Val_Accuracy == max1]
                                                                                                 0.691667
                                                                                          6
                                    Val_Accuracy
                                                                                          7
                                                                                                 0.691667
                               depth
                                                                                          8
                                                                                                 0.691667
                                        0.741667
                                                                                                 0.675000
                                                                                          9
                              # best hyperparam value
                                                                                                 0.675000
                                                                                          10
                              # (maximizing validation accuracy rate)
                                                                                                 0.675000
                                                                                         11
                              best_depth = df.Val_Accuracy.idxmax()
                              best_depth
                                                                                                 0.675000
                                                                                          12
```

# Holdout CV to find best value for max\_depth



#### Holdout CV - Test Accuracy rate

```
# Test accuracy rate
```

**EXAMPLE** 

# Feature importance

#### Classification Trees – Feature Importance

### Classification Trees - Feature Importance

#### importance

|               | importance |
|---------------|------------|
| Price         | 44.880677  |
| Shelve_Good   | 23.483022  |
| Advertising   | 10.678597  |
| CompPrice     | 8.444228   |
| Age           | 4.877601   |
| Education     | 3.484001   |
| US_Yes        | 2.769334   |
| Population    | 1.382540   |
| Income        | 0.000000   |
| Shelve_Medium | 0.000000   |
| Urban_Yes     | 0.000000   |
|               |            |

```
df9 = df9.sort_values(by = 'importance',axis=0)
df9.plot(kind='barh',color='r',legend = False)
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.grid()
```





# k-Fold Cross Validation

#### K-Fold Cross validation – no parameter tuning

#### 5-fold cross validation with max\_depth = 7

```
kfold = StratifiedKFold(n_splits = 5,shuffle = True, random_state=1)
model = DecisionTreeClassifier(max_depth = 7,random_state=1)
test_accuracy_rates = cross_val_score(model,X,y,cv=kfold) ← loop over 5 folds
test_accuracy_rates
array([0.65 , 0.7875, 0.8375, 0.7125, 0.625 ])
# Test accuracy_rate
test_accuracy_rates.mean()
```

#### Kfold CV - Search best value for hyperparameter max\_depth

#### 5-fold cross validation to find best max\_depth

```
X nontest, X test, y nontest, y test = train test split(X, y,
                                                   test size=0.40,
                                                   random_state=1)
model = DecisionTreeClassifier(random state=1)
parameters = {'max depth':range(3,20)}

    loop over max depth range

grid = GridSearchCV(model, parameters, cv=kfold)
                                                            • loop over 5 folds
grid.fit(X_nontest, y_nontest);
# Best depth
grid.best_params_
{'max depth': 6}
# Best Validation Accuracy Rate
grid.best_score_
0.7666666666666667
```

## Kfold CV – Test Accuracy rate

```
grid = GridSearchCV(model, parameters, cv=kfold)
grid.fit(X_nontest, y_nontest);

# Test Accuracy Rate
best_model = grid.best_estimator_
best_model.score(X_test, y_test)

0.775
```

```
# Test Accuracy Rate from the Confusion matrix
np.diag(df1).sum()/df1.to_numpy().sum()
```

**EXAMPLE** 

# Feature importance

#### Classification Trees – Feature Importance

```
best_model.feature_importances_
array([0.16034346, 0.03560911, 0.11234705, 0.02766065, 0.35954997,
       0.07983719, 0.02311168, 0.15577843, 0.02739163, 0.
       0.018370831)
X.columns
Index(['CompPrice', 'Income', 'Advertising', 'Population', 'Price', 'Age',
       'Education', 'Shelve_Good', 'Shelve_Medium', 'Urban_Yes', 'US_Yes'],
      dtvpe='object')
df9 = pd.DataFrame(100*best_model.feature_importances_,
                   index = X.columns,
                   columns=['importance'])
df9 = df9.sort_values(by = 'importance',axis=0,
                      ascending=False)
```

# Classification Trees – Feature Importance

| :  |       |      |
|----|-------|------|
| ım | porta | ınce |

|               | importance |
|---------------|------------|
| Price         | 35.954997  |
| CompPrice     | 16.034346  |
| Shelve_Good   | 15.577843  |
| Advertising   | 11.234705  |
| Age           | 7.983719   |
| Income        | 3.560911   |
| Population    | 2.766065   |
| Shelve_Medium | 2.739163   |
| Education     | 2.311168   |
| US_Yes        | 1.837083   |
| Urban_Yes     | 0.000000   |



## Classification Trees – Feature Importance Comparison

