
SUPPORT VECTOR MACHINES



Outline

• Definition - Support Vector Machine

• Decision boundary

• Linearly separable dataset

• Maximal Margin classifier (linear) hard-margin classifier

• Support vector classifier (linear)  soft-margin classifier

• Support vector machines (nonlinear boundary)
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Support Vector Machine

• ML Method that classifies observations by using an 
optimization model to find a function that serves as 
the boundary between the categories of the 
response

• If the data is linearly separable the boundary is a 
line (or a plane)

• If the data is not linearly separable, a linear 
boundary that allows for misclassifications is used

• In the general case a non-linear boundary between 
the categories can be found by means of kernel 
functions
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Linearly separable dataset
. 
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Non-Linearly separable dataset
. 
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not actual values



Non-Linearly separable dataset
. 
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not actual values

non-linear decision boundary



Non-Linearly separable dataset
. 

How to deal with 

non-linearly 

separable datasets?
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Non-Linearly separable dataset
. 

How to deal with 

non-linearly 

separable datasets?

Convert dataset into 

a linearly separable 

dataset
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Non-Linearly separable dataset
. 

To convert into a linearly separable dataset

add more features (polynomial, exponential, etc.)
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Non-Linearly separable dataset
. 

To convert into a linearly separable dataset

add more features (polynomial, exponential, etc.)

     one-feature dataset
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Non-Linearly separable dataset
. 

To convert into a linearly separable dataset

add more features (polynomial, exponential, etc.)

     not linearly separable

     not a linear boundary
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category 0

category 1



Non-Linearly separable dataset
. 

To convert into a linearly separable dataset

add more features (polynomial, exponential, etc.)

     solution: 

     create new feature  x2
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This “kernel” function
transform the data into
a linearly separable data



Non-Linearly separable dataset
. 

To convert into a linearly separable dataset

add more features (polynomial, exponential, etc.)
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linear boundary



Non-Linearly separable dataset
. 

To convert into a linearly separable dataset

add more features (polynomial, exponential, etc.)

      actually x1 not needed (y is linearly separable on x2 alone)
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boundary



Non-Linearly separable dataset
. 

To convert into a linearly separable dataset

add more features (polynomial, exponential, etc.)

x2      not linearly 

      separable

   x1
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Non-Linearly separable dataset
. 

To convert into a linearly separable dataset

add more features (polynomial, exponential, etc.)

x2      not linearly 

      separable

   x1
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Non-Linearly separable dataset
. 

To convert into a linearly separable dataset

add more features (polynomial, exponential, etc.)

      add new feature  x3

x2     

       

   x1
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x3 is the 
(squared) distance 
from the origin



Non-Linearly separable dataset
. 

To convert into a linearly separable dataset

add more features (polynomial, exponential, etc.)

      add new feature  x3

x2     

        

     

   x1 
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This “kernel” function
transform the data into
a linearly separable data



Radial Basis Function (RBF)
.
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Radial Basis Function (RBF)
.
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Transformation for a Linearly separable dataset
. 
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Transformation for a Linearly separable dataset
. 
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nonlinear boundary



Transformation for a Linearly separable dataset
. 
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linear boundary

row sums

elementwise exponentiation



Transformation for a Linearly separable dataset
. 
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linear boundary

row sums

elementwise exponentiation



Linearly separable dataset
. 

25

linear boundary

If a dataset is

linearly separable

then, there are

many linear 

boundaries 

available,

always



Linearly separable dataset
. 
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linear boundaries

If a dataset is

linearly separable

then, there are

many linear 

boundaries 

available,

always



Linearly separable dataset

If a dataset is

linearly separable

then, there are

many linear 

boundaries 

available,

always
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Linearly separable dataset

If a dataset is

linearly separable

then, there are

many linear 

boundaries 

available,

always
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linear boundary



Linearly separable dataset

If a dataset is

linearly separable

then, there are

many linear 

boundaries 

available,

always
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linear boundary

linear boundary



Maximal Margin Classifier



Maximal Margin Classifier

Find the separating 

hyperplane that 

makes the biggest 

gap (or margin) 

between the two 

classes

Objective is to 

maximize the Margin
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or gap

or gap



Maximal Margin Classifier

Think of fitting the 

widest street 

between the two 

classes
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or gap

or gap



Hard Margin Classifier



Hard Margin Classifier
. 

Restrict that all 

observations must 

be off the street and 

on the correct side
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Hard Margin Classifier
. 

Restrict that all 

observations must 

be off the street and 

on the correct side

Data points on 

the left or right 

margins are called

support vectors
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Hard Margin Classifier
. 

Hard Margin Classifier 

works if the data is 

linearly separable, 

only.

Otherwise the 

optimization model 

concludes that there 

is no feasible solution
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Soft Margin Classifier



Soft Margin Classifier
. 

• Allow for some 
margin violations, 
but still on the 
correct side of the 
boundary
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Soft Margin Classifier
. 

• Allow for some 
boundary violations 
(on the wrong side 
of the boundary)
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Soft Margin Classifier
. 

• Allow for some 
margin violations

• Allow for some 
boundary violations 

• But still want to 
have the street    
as wide as possible
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Soft Margin Classifier
. 

• Let zi be the slack of 
ith observation

• If zi = 0 then the obs 
is on the right side
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Soft Margin Classifier
. 

• Let zi be the slack of 
ith observation

• If zi = 0 then the obs 
is on the right side

• If 0 < zi < 1 then the 
obs has violated its 
margin 
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Soft Margin Classifier
. 

• Let zi be the slack of 
ith observation

• If zi = 0 then the obs 
is on the right side

• If 0 < zi < 1 then the 
obs has violated its 
margin 

• If zi > 1 then the obs 
has violated the 
boundary
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Soft Margin Classifier
. 

• The Soft Margin 
Classifier is also 
called the Support 
Vector Classifier

• Observations that 
violated their 
margin but not the 
boundary are the 
support vectors 
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Support Vector Classifier - Fundamentals



Support Vector Classifier

Predicts the category of y with a linear decision function h

           + b

           are the feature weights,

  b is the bias term
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Linearly separable dataset

Suppose boundary is

 x2 = 2x1 + 1

47

x 2 =
 2x
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Linearly separable dataset

Suppose boundary is

 x2 = 2x1 + 1

or

 2x1 - x2 + 1 = 0
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Linearly separable dataset

Suppose boundary is

 x2 = 2x1 + 1

or

 2x1 - x2 + 1 = 0

Define a linear function

   h(x1,x2) = 2x1 - x2 + 1

and call it 

decision function
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h(x1,x2)



Linearly separable dataset

This function

   h(x1,x2) = 2x1 - x2 + 1

is a plane in 

3D space with axes 

X1, X2, h(x1, x2)
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h(x1,x2)



Decision function

h(x1,x2) = 2x1 - x2 + 1 
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h(x1,x2)

2x
1 –

 x 2 +
 1 

= 
0

2x1 – x2 + 1 > 0

2x1 – x2 + 1 < 0



Decision function

h(x1,x2) = 2x1 - x2 + 1 
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h(x1,x2)

h =
 0

h > 0

h < 0



Decision function

h(x1,x2) = 2x1 - x2 + 1           side 2

If        side 1

h = 0 (x1,x2) on bound

h > 0 (x1,x2) on side 1

h < 0 (x1,x2) on side 2
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Decision function

h(x1,x2) = 2x1 - x2 + 1          

If     

h = 0 (x1,x2) on bound

h < 0 (x1,x2) on side 1

h > 0 (x1,x2) on side 2

Let
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Decision function
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h(x1, x2) = 2x1 – x2 + 1

h(x1, x2) = 0

h(x1, x2) < 0

h(x1, x2) > 0

z = 0

All data points lie on 
the plane k(x1, x2) = 0

z = f(x1, x2)

x1        
x2   

     



Decision function

Decision boundary is 
the set of points 

• on the plane h(x1,x2) 
with h = 0

• at the intersection of 
the planes 

• k(x1,x2) = 0
• and

• h(x1,x2) = 2x1 – x2 + 1
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Decision boundary

h(x1, x2) = 2x1 – x2 + 1

k(x1, x2) =
 0

h = 0



Decision function

Left Margin is the 
set of points 

• on the plane

• k(x1,x2) = 0
• with

• h(x1,x2) = 1
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Left M
argin

h(x1, x2) = 2x1 – x2 + 1

k(x1, x2) =
 0

h = +1



Decision function

Right Margin is the 
set of points 

• on the plane

• k(x1,x2) = 0
• and with

• h(x1,x2) = -1
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Right Margin

h(x1, x2) = 2x1 – x2 + 1

k(x1, x2) =
 0

h = -1



Decision function

Right Margin is the 
set of points 

• on the plane

• k(x1,x2) = 0
• and with

• h(x1,x2) = -1
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Points beyond Right Margin

h(x1, x2) = 2x1 – x2 + 1

k(x1, x2) =
 0

h = -1



Decision function

Left Margin is the 
set of points 

• on the plane

• k(x1,x2) = 0
• with

• h(x1,x2) = 1
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Points beyond Left M
argin

h(x1, x2) = 2x1 – x2 + 1

k(x1, x2) =
 0



Decision function
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h = +1

h = -1

h = +1

h = -1

Dashed lines show the points where the Decision function value (height) is equal to +1 or -1

x1        

x2   
     



Decision function
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Margin is the region between the dashed lines

Margin

x1        

x2   
     



Decision function

Predict

one class when h > 0 
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h > 0



Decision function

Predict

one class when h > 0 

or 

the other class if h ≤ 0
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h < 0



Decision function

Slope of h(x1, x2) 

A small slope gives  

a wide margin

A large slope gives  

a narrow  margin

The slope is given 

by w
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slopeMargin



Decision function

Slope of h(x1, x2) 

A small slope gives  

a wide margin

A large slope gives  

a narrow  margin

The slope is given 

by w
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small slope w1

Margin

large slope w1

Margin

1.0

1.0

h(x1, x2
)

h(x1,
 x2)

x1



Decision function

• We want the widest margin, 
• which is found by finding the smallest w,
• Or equivalently the smallest norm of w
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slope



Support Vector Classifier
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all points category zero on one side

all points category one on the other side

Let define the y-categories as 0 and 1

Decision function



Support Vector Classifier
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all points category -1 beyond left margin

all points category 1 beyond right margin

Let define the y-categories as -1 and +1

Decision function

this definition of y prevents any Margin violation



Decision function
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h = +1

h = -1

h = +1

left margin

Dashed lines show the points where the Decision function value (height) is equal to +1 or -1

right margin

Margin area

colors for the
categories

x1        

x 2   
     



Support Vector Classifier
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all points category -1 beyond left margin

all points category 1 beyond right margin

Let define the y-categories as -1 and +1

Decision function

note that  yi hi ≥ 1  for all data points of both categories



Hard Margin Classifier

Constrained optimization problem

Find   to

72

(equivalent to Maximize the margin)Obj. function

Constraints

but we cannot Minimize a vector



Hard Margin Classifier

Constrained optimization problem

Find   to
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(Minimize the norm of w)Obj. function

Constraints



Hard Margin Classifier

Constrained optimization problem

Find   to

a quadratic optimization problem on 

(xi and yi are known from the data set)
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Soft Margin Classifier

Allows for margin violations of size  zi ³ 0,  

       zi is the slack of ith observation

zi  measures how much the ith observation is allowed to 

violate the margin

The soft margin classifier formulation includes zi  in the 

optimization problem as follows
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Find     to

reducing          increases the margin

which also increases

Soft Margin Classifier
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Find     to

reducing          increases the margin

which also increases

Soft Margin Classifier

77

trade-off



Find     to

reducing          increases the margin

which also increases

Soft Margin Classifier

78

trade-off

Find hyperparameter C with cross validation



Support Vector Machine



Support Vector Machine (SVM)

SVM can predict the class of y 

with a nonlinear decision function h
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Support Vector Machine (SVM)

SVM is an extension of the SVC

that results from extending the set of 

predictors by means of kernels
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Support Vector Machine (SVM)

A kernel is a function that transforms 

a non-linearly separable dataset into 

a linearly separable dataset

82



Support Vector Machine (SVM)

Kernel types
• linear
• polynomial
• radial basis function (RBF)
• sigmoid
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SVM – Boundaries resulting from different kernels
.

84



SVM hyperparameters

• Cost C

• Kernel type (linear, polynomial, radial, sigmoid)

• Degree (polynomial kernel)

• Gamma (radial kernel)
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SVM Extension for K classes

Two approaches

   One vs. One

   One vs. All
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SVM for K classes - One vs. One

Fit SVMs (one for each pair of categories)

Classify the observations using each SVM

Assign the observation to the class to which 

      it was most frequently predicted
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SVM for K classes - One vs. All

Reclassify observations  
  +1 if it belongs to category i = 1
   -1 otherwise
Fit SVM and classify all observations
Repeat for categories i = 2,…,k
At the end, each observation has k predictions
Assign each observation to the class to which 
        it was most frequently predicted
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EXAMPLE 1



Example 1
.
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Example 1 – function to display boundary 
.
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Example – nonlinearly separable data
.
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Example – nonlinearly separable data
.
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Example – nonlinearly separable data
.
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Example - SVC with linear boundary and C=1
.

95

y = -1

y = +1

support vectors 
in the margin area
are shown with x



Example – Identify the 13 support vectors
.

96

y = -1

y = +1

these are the observations in the margin area



Example - Support vectors
.
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y = -1

y = +1

these are the observations in the margin



Example - SVC with linear boundary and C=1
.
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Example - SVC with linear boundary and C=0.1
.

99

smaller C → wider margin



Example – GridSearchCV to find best C
.
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Example – Plotting the Test data
.

101



Example - SVC with best C = 0.001
.
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Example - SVC with best C = 0.001
.

103

6 misclassifications

support vectors 
from the train set
with C = 0.001



Example - SVC with best C = 0.001
.

104



Example – SVM nonlinear boundary
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.



Example – SVM nonlinear boundary

106
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Example – SVM nonlinear boundary

107

.

Try nonlinear kernels to find nonlinear boundaries



Example – Nonlinear kernels

108

•To fit a polynomial kernel use kernel = ’poly’ 
selecting appropriate degree

•To fit a radial kernel use kernel = ’rbf’ 
• selecting appropriate gamma



Example – SVM nonlinear kernel
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Example – SVM nonlinear kernel

110

.



Example – SVM nonlinear kernel

111

.

misclassifications



Example – Increase cost to decrease margin

112

.

Increasing C gives a more irregular decision boundary

number of support vectors decreases



Example – Search for the best cost and gamma
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Example – Search for the best cost and gamma
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.



Example – test accuracy rate with best C, gamma

115

.



Example – More than 2 categories
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Example – More than 2 categories

117

.



Example – More than 2 categories

118
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Example – Plot test set on SVC regions

119

.
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.



Example – Plot test set on SVC regions

121
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Example – Test accuracy rate
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Example – GridSearchCV

123
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EXAMPLE 2 – Digits dataset



Example 2 – Digits recognition

Identify 
handwritten 
digits (0,…,9)
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Example 2 – Digits recognition
.
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Example 2 – Digits recognition
.

127

3823 images in the train set

1797 images in the test set



Example 2 – Digits recognition
.

128

each digit is stored in a single row with 64 columns



Example 2 – Digits recognition
.

129

each value is 
for the digit darknes,  
where 0 is a black pixel 
and 16 is a white pixel



Example 2 – Digits recognition
.
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Example 2 – Digits recognition
.
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Example 2 – Digits recognition
.
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Example 2 – Digits recognition
.
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Example 2 – Digits recognition
.
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Example 2 – Digits recognition
.
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Example 2 – Digits recognition
.

136



Example 2 – SVC Linear kernel
.
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Example 2 – SVC Linear kernel
.
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Example 2 – SVC Linear kernel
.
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Example 2 – SVC Linear kernel
.
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Example 2 – Best C and gamma
.
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Example 2 – GridSearchCV functions

grid = GridSearchCV(model,params,cv,…)
grid.fit(X_train, y_train)

• grid.best_params_
• grid.best_score_    validation accuracy rate
• grid.score(X_test,y_test)     test accuracy rate
• grid.best_estimator_            best model
• grid.cv_results_    CV validation acc. rates
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Example 2 – Best C and gamma
.

143



Example 2 – Best C and gamma
.

144

cv_results_ has the accuracy rates of each fold and their average in column mean_test_score

column 4
column 5

column 12



Example 2 – Best C and gamma
.

145

cv_results_ has the accuracy rates of each fold and their average in column mean_test_score



Example 2 – Best C and gamma
.
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Example 2 – Best C and gamma
.
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Example – Best C and gamma
.

148

Validation Accuracy rates



Example – Best C and gamma
.

149

Validation Accuracy rates

focus on
• small gamma
• large C 



Example 2 – 2nd GridSearchCV
.
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Example – Best C and gamma
.

151

Validation Accuracy rates


