Outline

- Hard Margin Support Vector Regression
- Soft Margin Support Vector Regression
- Example 1 Simple Support Vector Regression
- Example 2 Multiple Support Vector Regression

Hard Margin SVR

Solve for b, w_1, \ldots, w_p

Min
$$\frac{1}{2} ||\mathbf{w}||^2$$

Subject to $|y_i - \hat{y}_i| < \epsilon$
 $i = 1, \dots, n$

- Want to find the smallest region (tube) around the fitted line, that includes all the data points
- The model has hyperparameter ϵ
- For small ϵ values there is no feasible solution

Hard Margin SVR

Solve for b, w_1, \ldots, w_p

$$Min \qquad \frac{1}{2} \left[w_1^2 + \dots + w_p^2 \right]$$

Subject to $|y_i - \hat{y}_i| < \epsilon$

$$i=1,\ldots,n$$

- Want to find the smallest region (tube) around the fitted line, that includes all the data points
- The model has hyperparameter ϵ
- For small ϵ values there is no feasible solution

Soft Margin SVR

- Allow data points to exceed (left or right) margins
- Maximize the number of data points between margins
- Only the cost of residuals larger than ϵ is accumulated in the loss function,
- Points within ϵ -margins do not add cost and therefore have no effect on the regression equation

Solve for b, w_1, \ldots, w_p

Min $\frac{1}{2} [w_1^2 + \cdots + w_p^2] + C \sum_{i=1}^n L_i(b, w_1, \dots, w_p)$

The ϵ -insensitive loss function L is

$$L_i(b, w_1, \dots, w_p) = \begin{cases} 0 & \text{if } |y_i - \hat{y}_i| < \epsilon \\ |y_i - \hat{y}_i| - \epsilon & \text{if } |y_i - \hat{y}_i| > \epsilon \end{cases}$$

where
$$\hat{y}_i = b + w_1 x_{1i} + \cdots + w_p x_{pi}$$

- Allow data points to exceed (left or right) margins
- Maximize the number of data points between margins
- Only the cost of residuals larger than ϵ is accumulated in the loss function,
- Points within ϵ -margins do not add cost and therefore have no effect on the regression equation

.

• A regression function is found such that a tube with radius ε around the regression function contains most data

- A regression function is found such that a tube with radius ϵ around the regression function contains most data
- Points outside the tube are penalized

- A regression function is found such that a tube with radius ϵ around the regression function contains most data
- Points outside the tube are penalized
- Penalty is given by the loss function

- A regression function is found such that a tube with radius ϵ around the regression function contains most data
- Points outside the tube are penalized
- Penalty is given by the loss function

EXAMPLE 1 – SVR

Predict the Price of used cars with Odometer readings

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR

df1 = pd.read_csv('Odometer.csv')
```

	Odometer	Price
0	37.4	14.6
1	44.8	14.1
2	45.8	14.0
3	30.9	15.6
4	31.7	15.6
95	36.2	14.8
96	34.2	14.6
97	33.2	14.5
98	39.2	14.7
99	36.4	14.3

100 rows × 3 columns

Predict the Price of used cars with Odometer readings

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR

df1 = pd.read_csv('Odometer.csv')

Price = df1.Price
Odometer = df1.drop(["Price"],axis=1)
```

Fit Linear Regression model

```
m1 = LinearRegression()
m1.fit(Odometer, Price)
m1.score(Odometer, Price)

0.6482954749384247
```

yhat = m1.predict(Odometer)
df2 = df1.copy()
df2['prediction'] = yhat

	Odometer	Price	prediction
0	37.4	14.6	14.748130
1	44.8	14.1	14.253360
2	45.8	14.0	14.186499
3	30.9	15.6	15.182726
4	31.7	15.6	15.129237
95	36.2	14.8	14.828363
96	34.2	14.6	14.962085
97	33.2	14.5	15.028946
98	39.2	14.7	14.627781
99	36.4	14.3	14.814991

100 rows × 3 columns

```
plt.figure()
plt.scatter(Odometer, Price, c='k', s=5)
plt.plot(Odometer, yhat, color = 'r', linewidth = 0.5)
plt.ylabel('Price')
plt.xlabel('Odometer')
```



```
yhat = m1.predict(Odometer)
df2 = df1.copy()
df2['prediction'] = yhat
```

	Odometer	Price	prediction
0	37.4	14.6	14.748130
1	44.8	14.1	14.253360
2	45.8	14.0	14.186499
3	30.9	15.6	15.182726
4	31.7	15.6	15.129237
•••			
95	36.2	14.8	14.828363
96	34.2	14.6	14.962085
97	33.2	14.5	15.028946
98	39.2	14.7	14.627781
99	36.4	14.3	14.814991

100 rows × 3 columns

Build the SVR Model

Build the SVR Model


```
eps = [1.4, 1.0, 0.5, 0.1]
plt.figure()
for i in range(4):
    svr = SVR(kernel='linear',C=1.0,
              epsilon = eps[j])
    svr.fit(Odometer, Price);
    yhat = svr.predict(Odometer)
    left = yhat + eps[j]
    right = yhat - eps[j]
    plt.subplot(2,2,j+1)
    plt.scatter(Odometer, Price, c='b', s=1)
    plt.plot(Odometer,yhat,color = 'b',
             linewidth = 0.5)
    plt.plot(Odometer, left, color = 'r',
             linewidth = 0.1)
    plt.plot(Odometer, right, color = 'r',
             linewidth = 0.1
    r2=round(svr.score(Odometer, Price), 3)
    plt.annotate('r-square = {}'.format(r2),
                 (39,17.5), fontsize=7)
    plt.title('epsilon = {}'.format(eps[j]),
              fontsize=7)
```


SVR fits the flattest possible linear function trying to capture most data points

SVR fits the flattest possible linear function trying to capture most data points

EXAMPLE 2 – SVR

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import GridSearchCV
```

from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR

```
df = pd.read_csv('svr.csv')
df.head()
```

	X1	X2	Х3	X4	у
0	4.480614	1.363373	4.404379	3.399033	1.651549
1	0.149057	4.808124	4.067836	1.200827	-3.389763
2	4.162641	1.765042	1.313687	4.577033	0.977445
3	1.266521	3.202102	1.386985	3.580701	0.027955
4	3.171857	4.987052	2.216417	1.386676	3.632987


```
X = df[['X1', 'X2', 'X3', 'X4']]
y = df['y']
```

```
X_train, X_test, y_train, y_test =\
        train_test_split(X, y,
                         test size=0.33,
                         random_state=42)
```

Linear regression as baseline

```
linear = LinearRegression()
linear.fit(X_train,y_train)
linear.score(X_test,y_test)
```

0.6086552006495394

r-squared

```
yhat = linear.predict(X test)
plt.scatter(y_test,yhat,s=9,color='k')
plt.plot(xaxis,yaxis,color='r',linewidth=0.7)
plt.xlabel('y')
plt.ylabel('predicted y')
```


Support vector regressor with linear kernel

```
svr_linear = SVR(kernel='linear')
svr_linear.fit(X_train, y_train)
svr_linear.score(X_test,y_test)
```

0.6303795162411019

0.6303795162411019

r-squared

Support vector regressor with RBF kernel

```
svr_rbf = SVR(kernel='rbf')
svr_rbf.fit(X_train, y_train);
svr_rbf.score(X_test,y_test)
```

0.7304232109135085

r-squared

Kernel types

- linear
- polynomial
- radial basis function (RBF)
- sigmoid

Support vector regressor with linear kernel

```
svr_linear = SVR(kernel='linear')
svr_linear.fit(X_train, y_train)
svr_linear.score(X_test,y_test)
```

0.6303795162411019

0.6303795162411019

r-squared

Support vector regressor with RBF kernel

square-root of MSPE

RMSE for linear SVR: 1.3874704298641074 RMSE for RBF kernelized SVR: 1.1849143760665064

GridSearchCV - Find best C and ε

GridSearchCV - Find best C and ε

RMSE for RBF kernelized SVR: 1.0549893252501146

```
grid.best_params_
{'C': 5, 'epsilon': 0.5}

svr_best = grid.best_estimator_
svr_best.fit(X_train, y_train)
svr_best.score(X_test,y_test)

0.7862999176421599
```


Example 2 – SVR vs Linear Regression

Example 2 – SVR vs Linear Regression

