Multilayer Perceptron and Non-linear Regression Models

OVERVIEW

- Neural Network defined
- Multilayer perceptron (MLP)
- Activation functions
- Neural Network as a NL regression model
- Examples

NEURAL NETWORK

- The neural network is a class of machine learning model that uses stacked layers of connected nodes to learn high-level representations from the data
- It usually contains a large number of parameters
- The number of parameters in the model is usually more than the data available (therefore it is called an overparameterized model)

MULTILAYER PERCEPTRON

MULTILAYER PERCEPTRON

- There are many different types of neural networks
- One way to show these types is to classify the neural networks by their architecture
- The basic architecture is the fully connected multiple layer neural network (also called Densely connected neural network)
- It is called the perceptron if it does not have hidden layers
- If the perceptron is supplemented with hidden layers it becomes the multilayer perceptron (MLP)

14.1.6 DENSELY CONNECTED NEURAL NETWORK

- There are many different types of neural networks
- One way to show these types is to classify the neural networks by their architecture
- The basic architecture is the fully connected multiple layer neural network (also called Densely connected neural network)

PERCEPTRON

- The Densely connected neural network is called the perceptron if it does not have hidden layers
- If the perceptron is supplemented with hidden layers it becomes the multilayer perceptron

ACTIVATION FUNCTIONS

ACTIVATION FUNCTIONS

- Activation functions are used to make the neural network a nonlinear model
- A nonlinear model is more flexible to adjust to different patterns
- There exist many different activation functions
- The best activation functions for typical ML problems are well known
- For new ML problems, data scientist experiment with new activations

ACTIVATION FUNCTIONS

Logistic (sigmoid)

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent (tanh)

$$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

ReLU (Rectified Linear Unit)

$$\phi(z) = \begin{cases} 0 & z < 0 \\ z & z > 0 \end{cases}$$

NONLINEAR REGRESSION MODELS

NON LINEAR REGRESSION MODELS

 A regression model that is nonlinear in the parameters, for example

$$\hat{Y} = b_0 + b_1 X_1 + b_3 e^{b_2 X_2}$$

 where X_I is categorical (two categories A and B)

NEURAL NETWORK AS A NONLINEAR REGRESSION MODEL

LINEAR REGRESSION MODEL

 $Y_{i} = \beta_{0} + \beta_{1} X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_{i}$ $E[Y] = \beta_{0} + \beta_{1} X_{1} + \dots + \beta_{p-1} X_{p-1}$

- Nodes represent variables
- Arcs represent regression parameters

regression model

$$E[Y_i] = \beta_0 + \beta_1 H_{i1} + \dots + \beta_{m-1} H_{i,m-1}$$

$$H_{ij} = \alpha_{j0} + \alpha_{j1} X_{i1} + \dots + \alpha_{j,p-1} X_{i,p-1}$$

With no activation function

$$E[Y_i] = \beta_0 + \beta_1 H_{i1} + \dots + \beta_{m-1} H_{i,m-1}$$

$$H_{ij} = \alpha_{j0} + \alpha_{j1} X_{i1} + \dots + \alpha_{j,p-1} X_{i,p-1}$$

replacing H_{ij} into the first expression and rearranging

$$E[Y_i] = \beta_0 + \sum_{j=1}^{m-1} \beta_j \alpha_{j0} + \sum_{j=1}^{m-1} \beta_j \alpha_{j1} X_{i1} + \dots + \sum_{j=1}^{m-1} \beta_j \alpha_{j,p-1} X_{i,p-1}$$

$$E[Y_i] = \left[\beta_0 + \sum_{j=1}^{m-1} \beta_j \alpha_{j0}\right] + \left[\sum_{j=1}^{m-1} \beta_j \alpha_{j1}\right] X_{i1} + \dots + \left[\sum_{j=1}^{m-1} \beta_j \alpha_{j,p-1}\right] X_{i,p-1}$$

$$E[Y_i] = \beta_0^* + \beta_1^* X_{i1} + \dots + \beta_{p-1}^* X_{i,p-1}$$

thus, the model with no activation function is a linear regression model

With activation functions $g_Y()$ and g()

$$E[Y_i] = g_Y(\beta_0 + \beta_1 H_{i1} + \dots + \beta_{m-1} H_{i,m-1})$$

$$H_{ij} = g(\alpha_{j0} + \alpha_{j1} X_{i1} + \dots + \alpha_{j,p-1} X_{i,p-1})$$

replacing $H_{ij}\,$ into the first expression and rearranging

$$E[Y_i] = g_Y(\beta_0 + \beta_1 g(\alpha_{10} + \alpha_{11} X_{i1} + \dots + \alpha_{1,p-1} X_{i,p-1}) + \beta_2 g(\alpha_{20} + \alpha_{21} X_{i1} + \dots + \alpha_{2,p-1} X_{i,p-1}) + \dots$$

$$\beta_{m-1} g(\alpha_{m-1,0} + \alpha_{m-1,1} X_{i1} + \dots + \alpha_{m-1,p-1} X_{i,p-1}))$$

With activation functions g_{γ} () and g()

$$E[Y_i] = g_Y(\beta_0 + \beta_1 H_{i1} + \dots + \beta_{m-1} H_{i,m-1})$$

$$H_{ij} = g(\alpha_{j0} + \alpha_{j1} X_{i1} + \dots + \alpha_{j,p-1} X_{i,p-1})$$

replacing $H_{ij}\,$ into the first expression and rearranging

$$E[Y_i] = g_Y \left[\beta_0 + \sum_{j=1}^{m-1} \beta_j g(X_i^t \alpha_j) \right]$$

With activation functions g_{γ} () and g()

$$E[Y_i] = g_Y(\beta_0 + \beta_1 H_{i1} + \dots + \beta_{m-1} H_{i,m-1})$$

$$H_{ij} = g(\alpha_{j0} + \alpha_{j1} X_{i1} + \dots + \alpha_{j,p-1} X_{i,p-1})$$

replacing H_{ij} into the first expression and rearranging

$$E[Y_i] = g_Y \left[\beta_0 + \sum_{j=1}^{m-1} \beta_j g(X_i^t \alpha_j) \right]$$

if activation functions are $g(x) = \frac{1}{1+e^{-x}} = [1+e^{-x}]^{-1}$

With activation functions g_Y () and g()

$$E[Y_i] = g_Y(\beta_0 + \beta_1 H_{i1} + \dots + \beta_{m-1} H_{i,m-1})$$

$$H_{ij} = g(\alpha_{j0} + \alpha_{j1} X_{i1} + \dots + \alpha_{j,p-1} X_{i,p-1})$$

replacing H_{ij} into the first expression and rearranging

$$E[Y_i] = g_Y \left[\beta_0 + \sum_{j=1}^{m-1} \beta_j g(X_i^t \alpha_j) \right]$$

if activation functions are $g(x) = \frac{1}{1+e^{-x}} = [1+e^{-x}]^{-1}$

$$E[Y_i] = \left[1 + \exp\left[-\beta_0 - \sum_{j=1}^{m-1} \beta_j \left[1 + \exp(-X_i^t \alpha_j)\right]^{-1}\right]\right]^{-1}$$

thus, the NN model is a nonlinear regression model

LINEAR REGRESSION MODEL – LOSS FUNCTION

 $Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i$

$$E[Y] = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1}$$

Minimize the loss function to find the weights β_1 ,..., β_p

$$\underset{\beta_0, \dots, \beta_p}{\text{Min}} \quad Loss = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

$$\underset{\beta_0,...,\beta_p}{\text{Min}} \quad Loss = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p))^2$$

predictors (input variables)

LINEAR REGRESSION MODEL - LOSS FUNCTION

 $Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i$

$$E[Y] = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1}$$

Minimize the loss function to find the weights β_1 ,..., β_p

$$\underset{\beta_0,\dots,\beta_p}{\text{Min}} \quad Loss = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

$$\underset{\beta_0,...,\beta_p}{\text{Min}} \quad Loss = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p))^2$$

$$\underset{\beta_0,\ldots,\beta_p}{\operatorname{Min}} \quad Loss = \sum_{i=1}^n (y_i - \hat{y_i})^2 + \lambda \sum_{i=1}^{p-1} \beta_i^2 \qquad \text{to avoid overfitting}$$

penalty term predictors (input variables)

SINGLE HIDDEN LAYER NEURAL NETWORK – LOSS FUNCTION

With activation functions g_{γ} () and g()

$$E[Y_i] = g_Y(\beta_0 + \beta_1 H_{i1} + \dots + \beta_{m-1} H_{i,m-1})$$

$$H_{ij} = g(\alpha_{j0} + \alpha_{j1} X_{i1} + \dots + \alpha_{j,p-1} X_{i,p-1})$$

Minimize the loss function to find the weights $\alpha_{\text{10}},..,\alpha_{\text{mp}}$, $\beta_{\text{1}},..,\beta_{\text{p}}$

$$\underset{\beta_0,\dots,\beta_p}{\text{Min}} \quad Loss = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

$$\hat{y}_i = g_Y \left[\beta_0 + \sum_{j=1}^{m-1} \beta_j g(X_i^t \alpha_j) \right]$$

parameters α

SINGLE HIDDEN LAYER NEURAL NETWORK - LOSS FUNCTION

With activation functions $g_{\gamma}()$ and g()

$$E[Y_i] = g_Y(\beta_0 + \beta_1 H_{i1} + \dots + \beta_{m-1} H_{i,m-1})$$

$$H_{ij} = g(\alpha_{j0} + \alpha_{j1} X_{i1} + \dots + \alpha_{j,p-1} X_{i,p-1})$$

Minimize the loss function to find the weights $\alpha_{10},...,\alpha_{mp},\beta_1,...,\beta_p$

$$\underset{\beta_0,\dots,\beta_p}{\text{Min}} \quad Loss = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

$$\hat{y}_i = g_Y \left[\beta_0 + \sum_{j=1}^{m-1} \beta_j g(X_i^t \alpha_j) \right]$$

or use a loss with regularization to avoid overfitting

$$\underset{\beta_0, \dots, \beta_p}{\text{Min}} \quad Loss = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^{m-1} \beta_i^2 + \lambda \sum_{i=1}^{m-1} \sum_{j=0}^{p-1} \alpha_{ij}^2$$

parameters α

With activation functions g_Y () and g()

$$E[Y_i] = g_Y(\beta_0 + \beta_1 H_{i1} + \dots + \beta_{m-1} H_{i,m-1})$$

$$H_{ij} = g(\alpha_{j0} + \alpha_{j1} X_{i1} + \dots + \alpha_{j,p-1} X_{i,p-1})$$

Minimize the loss function to find the weights $\alpha_{10},...,\alpha_{mp},\beta_{1},...,\beta_{p}$

$$\underset{\beta_0, \dots, \beta_p}{\text{Min}} \quad Loss = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^{m-1} \beta_i^2 + \lambda \sum_{i=1}^{m-1} \sum_{j=0}^{p-1} \alpha_{ij}^2$$

- It is not simple to find the global minimum of this function
- NN models use gradient descent to minimize this function
- This is an iterative process with many steps.
- At each step the algorithm adjusts the weights to a direction that mostly reduces the current loss (the gradient vector direction)
- The process is complete when the loss stops decreasing.
- This process is called **Backpropagation**.

Cesar Acosta Ph.D.

parameters α

- A search algorithm to find the max (or min) of a function $f(w_1, ..., w_p)$
- By starting at an arbitrary location given by $w_1,...,w_p$ it adjusts these coordinates iteratively until the extreme point is found
- The adjustments are in the direction of the steepest slope
- The adjustment amount is called the step size (or learning rate)

- The direction of the steepest slope is given by the gradient vector of $f(w_1,...,w_p)$
- This is a column vector containing the partial derivatives of $f(w_1, ..., w_p)$
- The step size is found by trial and error

The loss function for linear regression is

٠.

$$J(w) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_1 + \dots + b_p x_p))^2$$

the partial derivatives are

$$\frac{\partial J(w)}{\partial b_0} = -2 \sum_{i=1}^n (y_i - (b_0 + b_1 x_1 + \dots + b_p x_p)) 1$$

$$\vdots$$

$$\frac{\partial J(w)}{\partial b_p} = -2 \sum_{i=1}^n (y_i - (b_0 + b_1 x_1 + \dots + b_p x_p)) x_p$$

Using matrix notation $\nabla J(w) = -2 \mathbf{X}^T \cdot (\mathbf{y} - \mathbf{X} \cdot \mathbf{b})$

The loss function for linear regression is

 $J(w) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ $= \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_1 + \dots + b_p x_p))^2$

the partial derivatives are

$$\frac{\partial J(w)}{\partial b_0} = -2 \sum_{i=1}^n \left(y_i - \left(b_0 + b_1 x_1 + \dots + b_p x_p \right) \right) 1$$
:

$$\frac{\partial J(w)}{\partial b_p} = -2 \sum_{i=1}^n (y_i - (b_0 + b_1 x_1 + \dots + b_p x_p)) x_p$$

Using matrix notation
$$\nabla J(w) = \mathbf{X}^T \cdot (\mathbf{y} - \mathbf{X} \cdot \mathbf{b})$$
 move to the opposite direction of the Gradient

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
```

Create a data set

```
n = 100
np.random.seed(42)
X = 2*np.random.rand(n, 1) # U(0,1) obs
y = 4 + 3 * X + np.random.randn(n, 1)
```

```
plt.plot(X, y, "k.")
plt.xlabel("$x_1$", fontsize=13)
plt.ylabel("$y$", rotation=0, fontsize=13)
plt.grid()
```



```
# add column of ones
X b = np.c [np.ones((n,1)), X]
X b[:5]
array([[1.
                   , 0.74908024],
       [1.
                   , 1.90142861],
       [1.
                   , 1.46398788],
       [1.
                   , 1.19731697],
       [1.
                   , 0.31203728]])
b1 = np.dot(X b.T, X b)
                               apply
b1 = np.linalg.inv(b1)
                               OLS
b2 = np.dot(X_b.T,y)
                               formula
beta = np.dot(b1,b2)
beta
array([[4.21509616],
       [2.77011339]])
                               find the
yhat = np.dot(X b,beta)
error = y - yhat
                               residuals
```

```
# loss is the sum of squared errors
cost = np.dot(error.T,error)
cost
array([[80.6584564]])
plt.plot(X,yhat,'r')
plt.plot(X, y, "k.")
plt.grid()
plt.show()
 11
 10
       0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
```

```
step size
                                                                           \nabla J(w) = -2 \mathbf{X}^T \cdot (\mathbf{y} - \mathbf{X} \cdot \mathbf{b})
\hat{y}
eta = 0.001
np.random.seed(1)
                                                   choose a
beta = np.random.randn(2,1)
                                                  starting pt.
print(beta[0],beta[1])
                                                                                                         error
[1.62434536] [-0.61175641]
                                                   999 steps
for i in range(999):
                                                                                                   gradient
     error = y - np.dot(X b,beta)
     gradients = np.dot(X_b.T,error)
                                                    \nabla J(w)
    beta = beta + eta * gradients
     cost = np.dot(error.T,error)
```

```
eta = 0.001
                                            step size
np.random.seed(1)
                                            choose a
beta = np.random.randn(2,1)
                                            starting pt.
print(beta[0],beta[1])
[1.62434536] [-0.61175641]
                                            999 steps
for i in range(999):
    error = y - np.dot(X b,beta)
    gradients = np.dot(X b.T,error)
                                            \nabla J(w)
    beta = beta + eta * gradients
    cost = np.dot(error.T,error)
beta
array([[4.21509617],
       [2.77011338]])
cost
array([[80.6584564]])
```

OLS with formula $(X^TX)^{-1}(X^Ty)$

```
learning rate
eta = 0.001
np.random.seed(1)
beta = np.random.randn(2,1)
print(beta[0],beta[1])
[1.62434536] [-0.61175641]
for i in range(999):
   error = y - np.dot(X b,beta)
   gradients = np.dot(X_b.T,error)
   beta = beta + eta * gradients
   cost = np.dot(error.T,error)
beta
array([[4.21509617],
       [2.77011338]])
cost
array([[80.6584564]])
```

$$\nabla J(w) = -2 \mathbf{X}^T \cdot (\mathbf{y} - \mathbf{X} \cdot \mathbf{b})$$

```
yhat = np.dot(X_b,beta)
```

```
plt.plot(X,yhat,'r')
plt.plot(X, y,"k.")
plt.xlabel('x')
plt.ylabel('y')
plt.grid()
plt.show()
```

