NEURAL NETWORKS

1.1 Introduction

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act and adapt.

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amount of data

NN Architectures

Neural Network Architectures

- The way the NN nodes connect allowing for the input data to be transformed into new meaningful representation of the data defines the NN architecture.
- The most simple NN architecture is the

Neural Network Architectures

- Densely connected neural network (MLP)
- Convolutional Neural Networks (convnets, CNN)
- Recurrent Neural Networks (RNN)
- Long-Short Term Memory Networks (LSTM)
- Transformer Neural Networks
- Generative Al Networks

MLP (Sequence of connected layers)

Deep CNN model for the CIFAR100 image classification

Convolution layers are interspersed with 2×2 max-pool layers, which reduce the size by a factor of 2 in both dimensions.

Simple Recurrent Neural Network (RNN)

short representation of the network

The network is unrolled into a more explicit version

- The input is a sequence of vectors X₁,..,X_L the target is a single response Y
- The weights W, U and B are estimated as the sequence is processed

Simple Recurrent Neural Network (RNN)

- The NN processes the input sequence X sequentially
- Each X_i feeds into the hidden layer, which has as input the activation vector A_i from the previous element in the sequence producing the current activation vector A_i
- The output layer produces a sequence of predictions O_i from the current activation A_i , but typically only the last of these, O_L , is of relevance

Introduction

- sklearn is used for MLP (not for other DL architecture)
- Keras is the library for building most deep learning models
- Providing high-level operations for quick and easy implementation
- Tensor libraries are used for low-level operations (tensor manipulation and differentiation)
 - Tensorflow (by Google)
 - CNTK (by Microsoft)
 - Theano (by U. of Montreal)

The Perceptron is the simplest NN model It is used for classification when there are

- Two categories
- Linearly separable data

Perceptron (1 input and 1 output layer)

input layer

for each row
$$\hat{y} = w_0 x_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

Multilayer Perceptron (MLP)

A perceptron supplemented with one or more hidden layers

Multilayer Perceptron (MLP)

Multilayer Perceptron

input layer

A generalization of linear model with multiple stages of processing to come to a decision (prediction or classification)

$$h_0 = w_{00}x_0 + w_{10}x_1 + w_{20}x_2 + w_{30}x_3 + b_0$$

$$h_1 = w_{01}x_0 + w_{11}x_1 + w_{21}x_2 + w_{31}x_3 + b_1$$

$$h_2 = w_{02}x_0 + w_{12}x_1 + w_{22}x_2 + w_{32}x_3 + b_2$$

$$\hat{y} = v_0h_0 + v_1h_1 + v_2h_2 + b$$

Multilayer Perceptron (two hidden layers)

input layer

Combines inputs with weights to obtain the net input Z which is passed on to predict the category by means of a decision function $\phi(z)$ (also called threshold function)

- Predicted categories (-1 or 1) are compared to true categories to compute the error and update the weights.
- The process is repeated multiple times (epochs) until convergence (error is small enough).

net input function
$$z = w_1 x_1 + ... + w_m x_m$$

decision function $\phi(z)$

$$\phi(z) = \begin{cases} 1 & \text{if } z \ge \theta \\ -1 & \text{otherwise} \end{cases}$$

 θ is called the threshold

net input function

$$z = w_0 x_0 + w_1 x_1 + \ldots + w_m x_m$$

$$w_0 = -\theta$$
 and $x_0 = 1$

decision function

$$\phi(z) = \begin{cases} 1 & if \ z \ge 0 \\ -1 & otherwise \end{cases}$$

input function in matrix notation

net input function

$$w_0 = -\theta$$
 and $x_0 = 1$

decision function

$$\phi(z) = \begin{cases} 1 & if \ z \ge 0 \\ -1 & otherwise \end{cases}$$

 $\mathbf{z} = w_0 x_0 + w_1 x_1 + \ldots + w_m x_m = \mathbf{w}^T \mathbf{x}$

threshold function $\phi(z)$

$$\phi(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

input function

$$z = w^T x$$

- For each column, randomly initialize the weights $w_1, ..., w_p$
- For each row i = 1, ..., n

find
$$\hat{y}_i = \phi(z_i)$$

find the error $(y_i - \hat{y}_i)$

update the weights
$$\;w_j\;=\;w_j+\Delta\,w_j\;$$

using
$$\Delta w_j = \lambda (y_i - \hat{y}_i) x_{ij}$$

for each column j = 1, ..., p

- For each column, randomly initialize the weights $w_1, ..., w_p$
- For each row i = 1, ..., n

find
$$\hat{y}_i = \phi(z_i)$$

prediction is +1 or -1

find the error $(y_i - \hat{y}_i)$

update the weights
$$w_j=w_j+\Delta w_j$$
 using $\Delta w_j=\lambda(y_i-\hat{y}_i)\,x_{ij}$ for each column $j=1,...,p$

- For each column, randomly initialize the weights $w_1, ..., w_p$
- For each row i = 1, ..., n

find
$$\hat{y}_i = \phi(z_i)$$
 find the error $(y_i - \hat{y}_i)$ error is -2, 0, or +2 update the weights $w_j = w_j + \Delta w_j$ using $\Delta w_j = \lambda (y_i - \hat{y}_i) x_{ij}$ for each column $j = 1,...,p$

- For each column, randomly initialize the weights $w_1, ..., w_p$
- For each row i = 1, ..., n

find
$$\hat{y}_i = \phi(z_i)$$

find the error $(y_i - \hat{y}_i)$

update the weights
$$w_j = w_j + \Delta \, w_j$$
 using $\Delta \, w_j = \lambda (y_i - \hat{y}_i) \, x_{ij}$

for each column j = 1,...,p

Adaline

ADAptive Linear NEuron (Adaline)

- Similar to the Perceptron
- The Perceptron compares the true categories with predicted categories (+1 or -1)
- Adaline compares the true categories with the result of the adaline activation function (a real number)
- Activation function is denoted by $\phi(z)$

ADAptive Linear NEuron (Adaline)

- Find $z = w_1 x_1 + ... + w_m x_m$
- net input z is transformed using Activation function

$$\phi(z) = z$$

- Update weights N times
- Prediction is given by decision function

using the updated weights

$$\hat{y} = \begin{cases} 1 & \text{if } z > 0 \\ -1 & \text{if } z \le 0 \end{cases}$$

Adaline vs Perceptron

Adaptive Linear Neuron (Adaline)

Adaline learning rule

- Randomly initialize the weights $w_1, ..., w_p$
- For each row i = 1, ..., n

find
$$z_i = w_1 x_{1i} + \cdots + w_p x_{pi}$$

find the error $(y_i - z_i)$

error is a real number

update the weights
$$w_j=w_j+\Delta w_j$$
 using $\Delta w_j=\lambda\sum_{i=1}^n\left(y_i-\phi(z_i)\right)x_{ij}$ for each column $j=1,...,p$

Repeat N times, then predict with decision function

Logistic Regression

Logistic Regression

 A special case of Adaline with different activation function and loss function

Adaline vs Logistic Regression

Logistic Regression

Adaline

activation function

$$\phi(z) = z$$
 where $z = w_1 x_1 + \dots + w_p x_p$

loss function

$$J(w) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{n} (y_i - \phi(z_i))^2 = \sum_{i=1}^{n} (y_i - z_i)^2$$

activation function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$
 where $z = w_1 x_1 + \dots + w_p x_p$

loss function

$$J(w) = -\sum_{i=1}^{n} [y_i \log \phi(z_i) + (1 - y_i) \log(1 - \phi(z_i))]$$

- Categories labeled as 0 and +1
- Activation function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Decision function (Threshold function)

$$\hat{y} = \begin{cases} 1 & \text{if } \phi(z) \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

Activation function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Decision function

$$\hat{y} = \begin{cases} 1 & \text{if } \phi(z) \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

Activation function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Decision function

$$\hat{y} = \begin{cases} 1 & \text{if } \phi(z) \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{y} = \begin{cases} 1 & \text{if } z \ge 0.0\\ 0 & \text{otherwise} \end{cases}$$

Multilayer Perceptron

Multilayer Perceptron

A Perceptron with at least one intermediate layer

Multilayer Perceptron (MLP)

A generalization of linear model with multiple stages of processing to come to a decision (prediction or classification)

$$h_0 = w_{00}x_0 + w_{10}x_1 + w_{20}x_2 + w_{30}x_3 + b_0$$

$$h_1 = w_{01}x_0 + w_{11}x_1 + w_{21}x_2 + w_{31}x_3 + b_1$$

$$h_2 = w_{02}x_0 + w_{12}x_1 + w_{22}x_2 + w_{32}x_3 + b_2$$

$$\hat{y} = v_0h_0 + v_1h_1 + v_2h_2 + b$$

Multilayer Perceptron (MLP)

May have multiple hidden layers

Activation Functions

- Activation functions are used to let the NN become a nonlinear model (for classification or regression)
- They help in the convergence of the learning algorithm
- Common Activation functions

tanh MLP, RNN

ReLU MLP, CNN

softmax (multi-class classification)

MLP – tanh activation function

Activation functions are used to let the NN become a nonlinear model

$$h_0 = \tanh(w_{00}x_0 + w_{10}x_1 + w_{20}x_2 + w_{30}x_3 + b_0)$$

$$h_1 = \tanh(w_{01}x_0 + w_{11}x_1 + w_{21}x_2 + w_{31}x_3 + b_1)$$

$$h_2 = \tanh(w_{02}x_0 + w_{12}x_1 + w_{22}x_2 + w_{32}x_3 + b_2)$$

$$\hat{y} = v_0h_0 + v_1h_1 + v_2h_2 + b$$

Common Activation Functions

Logistic (sigmoid)

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent (tanh)

$$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

ReLU (Rectified Linear Unit)

$$\phi(z) = \begin{cases} 0 & z < 0 \\ z & z > 0 \end{cases}$$

Deep Neural Network

Model may have thousands of parameters (regression coefficients)

Notes

- Scale the data before building NN models
- NN layer is called Dense if all nodes are connected with nodes from neighbor layers
- NN is called Multilayer Perceptron (MLP) if all layers are dense

Notes

- For small datasets use a small number of hidden layers otherwise risk of overfitting
- Consider increasing the number of hidden layers with larger datasets
- NN hyperparameters:
 - number of hidden layers
 - number of nodes per layer
 - learning rate λ

Example 1 – Multilayer Perceptron

Example 1 – Multilayer Perceptron

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

```
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.neural_network import MLPClassifier
```

```
df = pd.read_csv('moons.csv')
df
```

```
feature1 feature2 label
0 0.161278 1.040189 0
1 -0.198249 0.650045 0
2 0.718082 -0.387594 1
```

```
y = df.label
X = df.drop(['label'],axis=1)
```

```
y.value_counts()

1    100
0    100
```

Example 1 – Nonlinearly separable data

```
plt.figure(figsize=(10,5))
plt.scatter(X.feature1, X.feature2, s=18, c=colors, alpha=0.7)
plt.xlabel('X1')
plt.ylabel('X2')
plt.grid()
```


Example 1 – Function to display boundary

```
def plot1(model, X, y, h=0.01, pad=0.25):
    x \min, x \max = X[:, 0].\min()-pad, X[:, 0].\max()+pad
    y \min, y \max = X[:, 1].\min()-pad, X[:, 1].\max()+pad
    xx, yy = np.meshgrid(np.arange(x min, x max, h), np.arange(y min, y max, h))
    Z = model.predict(np.c [xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.figure(figsize=(10,5))
    plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.2)
    my dict = \{-1: 'r', 1: 'b', 0: 'q'\}
    colors = np.vectorize(my dict.get)(y)
    plt.scatter(X[:,0], X[:,1], s=30, c=colors, alpha=0.7)
    plt.xlim(x min, x max)
    plt.ylim(y min, y max)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.grid()
```

Example 1: 1 hidden layer with 10 nodes

```
mlp = MLPClassifier(solver='lbfgs',random_state=0,hidden_layer_sizes=[10])
mlp.fit(X_train, y_train)
plot1(mlp,X_train, y_train)
```


Example 1: 1 hidden layer with 100 nodes

```
mlp = MLPClassifier(solver='lbfgs', random_state=0,hidden_layer_sizes=[100])
mlp.fit(X_train, y_train);
plot1(mlp,X_train.values, y_train)
```


Example 1: 2 hidden layers with 10 nodes each

```
mlp = MLPClassifier(solver='lbfgs', random_state=0,hidden_layer_sizes=[10,10])
mlp.fit(X_train, y_train)
plot1(mlp,X_train, y_train)
```


Example 1: Two 10-node hidden layers with tanh

Example 1: Two 10-node hidden layers with tanh

```
# Test accuracy rate
mlp.fit(X_train, y_train)
y_pred = mlp.predict(X_test)
accuracy_score(y_test, y_pred)
0.98
pd.crosstab(y_test, y_pred,rownames = ['y_test'],colnames=['predictions'])
predictions 0 1
    y_test
       0 24 1
          0
             25
```

Example 2 – MLP Cancer dataset

Analytics

Cancer Data

→ 30 input nodes →																			
Y	<				average	values				>	<				worst	values			
out	radius	texture	perimeter	area	smoothness	compactness	concavity	concave p	symmetry	fractal_dir	radius	texture	perimeter	area	smoothness	compactness	concavity	concave p	symmetry
М	17.99	10.38	122.8	1001	0.1184	0.2776	0.3001	0.1471	0.2419	0.07871	25.38	17.33	184.6	2019	0.1622	0.6656	0.7119	0.2654	0.4601
M	20.57	17.77	132.9	1326	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	24.99	23.41	158.8	1956	0.1238	0.1866	0.2416	0.186	0.275
M	19.69	21.25	130	1203	0.1096	0.1599	0.1974	0.1279	0.2069	0.05999	23.57	25.53	152.5	1709	0.1444	0.4245	0.4504	0.243	0.3613
М	11.42	20.38	77.58	386.1	0.1425	0.2839	0.2414	0.1052	0.2597	0.09744	14.91	26.5	98.87	567.7	0.2098	0.8663	0.6869	0.2575	0.6638
М	20.29	14.34	135.1	1297	0.1003	0.1328	0.198	0.1043	0.1809	0.05883	22.54	16.67	152.2	1575	0.1374	0.205	0.4	0.1625	0.2364
М	12.45	15.7	82.57	477.1	0.1278	0.17	0.1578	0.08089	0.2087	0.07613	15.47	23.75	103.4	741.6	0.1791	0.5249	0.5355	0.1741	0.3985
М	18.25	19.98	119.6	1040	0.09463	0.109	0.1127	0.074	0.1794	0.05742	22.88	27.66	153.2	1606	0.1442	0.2576	0.3784	0.1932	0.3063
М	13.71	20.83	90.2	577.9	0.1189	0.1645	0.09366	0.05985	0.2196	0.07451	17.06	28.14	110.6	897	0.1654	0.3682	0.2678	0.1556	0.3196
М	13	21.82	87.5	519.8	0.1273	0.1932	0.1859	0.09353	0.235	0.07389	15.49	30.73	106.2	739.3	0.1703	0.5401	0.539	0.206	0.4378
М	12.46	24.04	83.97	475.9	0.1186	0.2396	0.2273	0.08543	0.203	0.08243	15.09	40.68	97.65	711.4	0.1853	1.058	1.105	0.221	0.4366
М	16.02	23.24	102.7	797.8	0.08206	0.06669	0.03299	0.03323	0.1528	0.05697	19.19	33.88	123.8	1150	0.1181	0.1551	0.1459	0.09975	0.2948
М	15.78	17.89	103.6	781	0.0971	0.1292	0.09954	0.06606	0.1842	0.06082	20.42	27.28	136.5	1299	0.1396	0.5609	0.3965	0.181	0.3792
М	19.17	24.8	132.4	1123	0.0974	0.2458	0.2065	0.1118	0.2397	0.078	20.96	29.94	151.7	1332	0.1037	0.3903	0.3639	0.1767	0.3176
М	15.85	23.95	103.7	782.7	0.08401	0.1002	0.09938	0.05364	0.1847	0.05338	16.84	27.66	112	876.5	0.1131	0.1924	0.2322	0.1119	0.2809
М	13.73	22.61	93.6	578.3	0.1131	0.2293	0.2128	0.08025	0.2069	0.07682	15.03	32.01	108.8	697.7	0.1651	0.7725	0.6943	0.2208	0.3596
М	14.54	27.54	96.73	658.8	0.1139	0.1595	0.1639	0.07364	0.2303	0.07077	17.46	37.13	124.1	943.2	0.1678	0.6577	0.7026	0.1712	0.4218
М	14.68	20.13	94.74	684.5	0.09867	0.072	0.07395	0.05259	0.1586	0.05922	19.07	30.88	123.4	1138	0.1464	0.1871	0.2914	0.1609	0.3029
М	16.13	20.68	108.1		0.117		0.1722	0.1028		0.07356	20.96	31.48	136.8		0.1789	0.4233	0.4784	0.2073	0.3706
М	19.81	22.15	130	1260	0.09831	0.1027	0.1479	0.09498	0.1582	0.05395	27.32	30.88	186.8	2398	0.1512	0.315	0.5372	0.2388	0.2768
В	13.54	14.36	87.46	566.3	0.09779	0.08129	0.06664	0.04781	0.1885	0.05766	15.11	19.26	99.7	711.2	0.144	0.1773	0.239	0.1288	0.2977
В	13.08	15.71	85.63	520	0.1075	0.127	0.04568	0.0311	0.1967	0.06811	14.5	20.49	96.09	630.5	0.1312	0.2776	0.189	0.07283	0.3184
В	9.504	12.44	60.34	273.9	0.1024	0.06492	0.02956	0.02076	0.1815	0.06905	10.23	15.66	65.13	314.9	0.1324	0.1148	0.08867	0.06227	0.245
М	15.34	14.26	102.5	704.4	0.1073	0.2135	0.2077	0.09756	0.2521	0.07032	18.07	19.08	125.1	980.9	0.139	0.5954	0.6305	0.2393	0.4667
М	21.16	23.04	137.2	1404	0.09428	0.1022	0.1097	0.08632	0.1769	0.05278	29.17	35.59	188	2615	0.1401	0.26	0.3155	0.2009	0.2822

Example 2 – MLP on Cancer data

Example 2 – MLP on Cancer data

sklearn.neural_network.MLPClassifier

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10,

Example 2 – MLP on Cancer data

```
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
from sklearn.neural network import MLPClassifier
from sklearn.datasets import load breast cancer
cancer = load breast cancer()
cancer.keys()
dict keys(['data', 'target', 'frame', 'target names', 'DESCR', 'feature names'
X train, X test, y train, y test = train test split(
      cancer.data, cancer.target, random state=0)
mlp = MLPClassifier(random state=42)
mlp.fit(X train, y train);
# Accuracy rate
mlp.score(X test, y test)
0.916083916083916
```

Example 2 – Standardize the data

```
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

Example 2 – Standardize the data

```
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

mlp = MLPClassifier(random_state=0)
mlp.fit(X_train_scaled, y_train);

/opt/anaconda3/lib/python3.7/site-packages/sklearn/neural_network/_multilayer_perceptron.py:696:
Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
ConvergenceWarning,
```

```
mlp.score(X_test_scaled, y_test)
0.965034965034965
```

Example 2

Increase max_iter

```
mlp = MLPClassifier(max_iter=1000, random_state=0)
mlp.fit(X_train_scaled, y_train)
mlp.score(X_test_scaled, y_test)
```

0.972027972027972

No Convergence Warning

Regularization on MLP

```
mlp = MLPClassifier(max_iter=1000, alpha=0.9, random_state=0)
mlp.fit(X_train_scaled, y_train)
mlp.score(X_test_scaled, y_test)
```

0.9790209790209791

```
search for the best alpha
```

```
y_pred = mlp.predict(X_test_scaled)
accuracy_score(y_test, y_pred)
```

0.9790209790209791

Example 2 - weights

Weights

Example 2 - weights

Example 2 - weights

```
# weights from 30 inputs to 100 hidden nodes
dfc = pd.DataFrame(mlp.coefs_[0])
dfc.columns = ['x' + str(x)  for x  in range(1,101)]
dfc.index = cancer.feature_names
np.round(dfc,4)
                                                                   100 hidden nodes
```

		x1	x2	х3	х4	х5	x6	х7	x8	х9	x10	 x91	x92	x93
	mean radius	-0.0666	0.2167	0.0002	0.0000	-0.1716	-0.1724	-0.0144	0.1295	0.0000	0.0017	 -0.1856	0.0001	0.0423
	mean texture	-0.2148	0.0662	-0.0000	-0.0000	0.1667	-0.1189	-0.0000	0.0777	-0.0009	-0.0777	 -0.1800	0.0088	0.0941
	mean perimeter	0.0522	-0.1585	-0.0037	0.0089	0.0247	-0.2331	-0.0089	0.0432	-0.0229	-0.0521	 -0.2212	-0.0175	0.0645
	mean area	-0.1934	0.0265	0.0000	0.0000	0.0830	0.1879	0.0000	-0.0991	0.0016	-0.0243	 0.1973	-0.0000	-0.0175
30	mean smoothness	-0.1693	0.1882	-0.0000	0.0030	-0.0931	0.1523	0.0000	-0.2373	0.0097	-0.0407	 -0.0334	-0.0000	-0.0427
input	mean compactness	0.1589	-0.0196	-0.0000	0.0024	0.1134	-0.1178	0.0103	0.1277	0.0155	0.0006	 -0.1209	0.0000	-0.0754
	mean concavity	-0.0126	-0.1817	-0.0028	-0.0104	-0.0735	0.0677	-0.0015	-0.0542	-0.0000	-0.0035	 0.0121	0.0000	-0.0091
	mean concave points	0.1279	-0.2572	-0.0000	-0.0058	-0.1201	0.2725	-0.0000	0.1377	-0.0004	-0.0022	 -0.0830	0.0000	-0.0099
	mean symmetry	0.0892	-0.1357	-0.0000	-0.0000	-0.0468	0.0855	0.0133	0.1542	0.0000	-0.0480	 0.0836	0.0050 0 weight	0.0609

3000 weight coeffs

Example 2 – weights to Output node

```
# weights from 100 hidden nodes to the ouput node

dfc = pd.DataFrame(mlp.coefs_[1])

dfc.index = ['x' + str(x) for x in range(1,101)]

dfc.columns = ['y']

np.round(dfc,4)
```

x1 -0.1964 x2 0.1213 x3 0.0187 x4 0.0000 x5 -0.1035 ... x96 0.0111 x97 0.1944 x98 0.0123 x99 -0.1806 x100 -0.0408

