Deep Learning models
for classification

CLASSIFICATION

Classification and regression glossary

Binary classification—A classification task where each input sample should
be categorized into two exclusive categories.

Multiclass classification—A classification task where each input sample
should be categorized into more than two categories: for instance, classifying
handwritten digits.

Multilabel classification—A classification task where each input sample can
be assigned multiple labels. For instance, a given image may contain both a
cat and a dog and should be annotated both with the “cat” label and the
“dog” label. The number of labels per image is usually variable.

Cesar Acosta Ph.D.

Binary classification
- IMDB Dataset -

OVERVIEW

The IMDB (Internet Movie
Database) dataset has
reviews (positive and
negative) for about 50000
movies.

Half the reviews for
training and half the
reviews for testing

Each set of 25000 reviews
has 50% positive and 50%
negative

The data has already been
pre-processed.

Each review is a paragraph
(a sequence of words)

Each word in the reviews
has been transformed into
an integer (each one
stands for a specific word
in a dictionary).

Cesar Acosta Ph.D.

NEURAL NETWORK FOR IMDB Dataset

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from tensorflow import keras

from tensorflow.keras import layers
from tensorflow.keras.datasets import imdb

Load the IMDB Dataset

train data,train labels),\
(test_data,test labels) = imdb.load data(num words=10000) * Ignore rare words

* Keep the top 10000 most frequently
occurring words in the train data set

Cesar Acosta Ph.D.

NEURAL NETWORK FOR IMDB Dataset

£ DAEPSE Ol NOROS) IN T L dReR A el S * Each word in the reviews has been transformed into an
print(len(train_datal[0]), integer
len(train_datal1l), * Each one stands for a specific word in a dictionary

len(train_datal2]),
len(train_datal[3]))

218 189 141 550

show integer—-encoded words of 1st review
train_datal:1]

array([list([1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 83

8, 112, 5e, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 4536, 1111, 17, 546, 38, 1

3, 447, 4, 192, 50, 16, 6, 147, 2025, 19, 14, 22, 4, 1920, 4613, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 1
3, 1247, 4, 22, 17, 515, 17, 12, 16, 626, 18, 2, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2223, 5244, 16, 480, 66, 378
5, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 1415, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407,

16, 82, 2, 8, 4, 107, 117, 5952, 15, 256, 4, 2, 7, 3766, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 2, 1
029, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2071, 56, 26, 141, 6, 194, 7486, 18, 4, 226, 22, 21, 134, 476, 26, 480,

5, 144, 30, 5535, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 1334, 88, 12, 16, 283, 5, 16, 4472, 113, 10
3, 32, 15, 16, 5345, 19, 178, 321)1;

show class of 1st review (0 is positive, 1 is negative)
test_labels[:1]

array([0]) Cesar Acosta Ph.D.

NEURAL NETWORK FOR IMDB Dataset

stringl = decode_reviewl[:2000]
stringl

". this film was just brilliant casting location scenery story direction everyone's really suited the part they pla
yed and you could just imagine being there robert . is an amazing actor and now the same being director . father ca
me from the same scottish island as myself so i loved the fact there was a real connection with this film the witty
remarks throughout the film were great it was just brilliant so much that i bought the film as soon as it was relea
sed for . and would recommend it to everyone to watch and the fly fishing was amazing really cried at the end it wa
s so sad and you know what they say if you cry at a film it must have been good and this definitely was also . to t
he two little boy's that played the . of norman and paul they were just brilliant children are often left out of th
e . list i think because the stars that play them all grown up are such a big profile for the whole film but these
children are amazing and should be praised for what they have done don't you think the whole story was so lovely be
cause it was true and was someone's life after all that was shared with us all"

number of letters in 1st review
len(stringl)

1113

number of words in 1st review

len(stringl.split())
218

Cesar Acosta Ph.D.

ENCODE THE SEQUENCE OF INTEGERS INTO VECTORS OF 0s AND 1s

Reviews have different lengths
Store each review into a binary vector

def vectorize sequences(sequences, dimension=10000):
results = np.zeros((len(sequences), dimension))

for 1i, se.q1-1ence in enumerate(sequences): of Iength 10000
for j in sequence:
results[i, j] = 1. * For example the vector [8, 5] would be

return results in a vector filled with Os, except for

: : : entries 8 and 5 which would be filled
X _train = vectorize sequences(train_data)

x_test = vectorize_sequences(test_data) with 1s
There are 25000 reviews in the train set

x_train.shape

(25000, 10000)

transform labels from binary int64 to as float32

y_train = np.asarray(train labels).astype('float32')
y_test = np.asarray(test labels).astype('float32"')

Cesar Acosta Ph.D.

BUILD THE NEURAL NETWORK

3. Build Network

model = keras.Sequential([
layers.Dense(1l6,activation='relu'),
layers.Dense(1l6,activation='relu'),
layers.Dense(l,activation="'sigmoid")

1)

model.compile(optimizer='rmsprop',

loss='binary crossentropy'
metrics = ['accuracy'])

input layer
(10000 nodes)

hidden layer
(16 hidden nodes)

hidden layer
(16 hidden nodes)

Cesar Acosta Ph.D.

TRAIN THE NEURAL NETWORK

4. Train the NN * Split train subset into validation and actual

_ _ train portions
Split the train data set

into validation and "actual train" sets ° There are 25000 reviews in the train set

set aside the validation set * Use first 10000 reviews (from the train set)
x_val = x_train[:10000] for validation

y_val = y train[:10000]

* Use remaining 15000 reviews for training
define the actual train set
partial_x_train = x_train[10000:]
partial_y_train = y_train[10000:]

* Train (fit) the model for 20 epochs

Cesar Acosta Ph.D.

TRAIN THE NEURAL NETWORK

history = model.fit(partial_x_train,partial_y_train,
epochs=20,batch_size=512,
validation_data=(x_val, y_val))

We do not update the gradient vector with each observation
to reduce computer time. Instead we do it in batches of 512
observations

Split the train data set into batches of 512 observations

After the batch gives the new gradient we move in that
direction and update the loss value

After all batches are processed we get the mimized loss

We repeat the process 20 times (each iteration over all the
training data is called an epoch)

Cesar Acosta Ph.D.

TRAIN THE NEURAL NETWORK

history = model.fit(partial_x_train,partial_y_train,
epochs=20,batch_size=512,
validation_data=(x_val, y_val))

After calling £it the model will start to iterate on the training
data in batches of 512 observations, 20 times over (each
iteration over all the training data is called an epoch).

For each batch, the model will compute the gradient of the
loss and update the weights (in the gradient direction)
reducing the value of the loss for the batch.

There will be 15000/512 = 29 gradient updates per epoch.

After 20 epochs, the model will have performed 29 x 20 = 580
gradient updates.

We expect that the loss will be sufficiently low that the
model is capable of classifying the newswires with high
accuracy

Cesar Acosta Ph.D.

TRAIN THE NEURAL NETWORK

4. Train the NN

set aside the validation set
partial x train = x_train[10000:]
partial y train = y train[10000:]

test set
x_val = x_train[:10000]
y_val y_train[:10000]

see the metrics in a dataframe format
history = model.fit(partial_x_train,partial_y train,
epochs=20,batch_size=512,

f9 = 5 F hi i
validation_data=(x_val,y_val)) df9 pd.DataFrame(history_dict)

df9[:5]

The call to model.fit() returns a History object. loss accuracy val_loss val_accuracy
This object has a member .history, which is a dictionary with the loss and accuracy after each epoch 0 0537925 0.776267 0.432548 0.8275
1 0.339545 0.890933 0.375541 0.8479

history dict = history.history

history dict.keys() 2 0257223 0.914667 0.291091 0.8882
dict keys(['loss', 'accuracy', 'val loss', 'val accuracy']) 3 0.204734 0.933933 0.278373 0.8890
4 0.175646 0.944067 0.279144 0.8869

TRAIN THE NEURAL NETWORK

4. Train the NN

set aside the validation set
partial x train = x_train[10000:]
partial y train = y train[10000:]

test set _) o
x val = x train[:10000] Plot Validation loss to prevent overfitting
y_val = y train[:10000]

see the metrics in a dataframe format
history = model.fit(partial_x_train,partial_y train,
epochs=20,batch_size=512,

f9 = 5 F hi i
validation_data=(x_val,y_val)) df9 pd.DataFrame(history_dict)

df9[:5]

Train Validation
The call to model.fit() returns a History object. loss accuracy val_loss val_accuracy
This object has a member .history, which is a dictionary with the loss and accuracy after each epoch 0 0537925 0.776267 0.432548 0.8275
1 0.339545 0.890933 0.375541 0.8479

history dict = history.history

history dict.keys() 2 0257223 0.914667 0.291091 0.8882
dict keys(['loss', 'accuracy', 'val loss', 'val accuracy']) 3 0.204734 0.933933 0.278373 0.8890
4 0.175646 0.944067 0.279144 0.8869

Plot Train and Validation loss

loss_values = history_dict['loss']
loss_values = history_dict['val_loss']
epochs = range(1,21)

val_

plt.
.plot(epochs, loss_values, 'r',

plt

plt.

plt

plt.
plt.
plt.
.grid()

plt

figure(figsize=(10,5))

label='Training Loss"')
plot(epochs,val_loss_values,'b’,
label="'Validation Loss')

.xticks(epochs)

xlabel('Epochs")
ylabel('Loss"')
legend()

Loss

0.7 1

0.6

0.5 4

0.4

0.3 4

0.2 4

0.1+

0.0 A

—— Training Loss
— Validation Loss

Plot Train and Validation loss

loss_values = history_dict['loss']

val_loss_values = history_dict['val_loss']

epochs = range(1,21)

plt.figure(figsize=(10,5))

plt.plot(epochs,loss_values, 'r',
label='Training Loss"')

plt.plot(epochs,val_loss_values, 'b’',
label='Validation Loss"')

plt.xticks(epochs)

plt.xlabel('Epochs"')

plt.ylabel('Loss")

plt.legend()

plt.grid()

df9[df9.val_loss==df9.val_loss.min()]

loss accuracy val_loss val_accuracy

5 0.144871 0.954067 0.28409 0.8864

Loss

0.7 1

0.6

0.5 4

0.4

0.3 4

0.2 4

0.1+

0.0 A

—— Training Loss
— Validation Loss

Underfitting

Overfitting

Plot Train and Validation Accuracy

acc_values = history_dict['accuracy']

val_acc_values = history_dict['val_accuracy'l]

plt.figure(figsize=(10,5))
plt.plot(epochs,df9.accuracy, 'b"',
label='Training Accuracy"')
plt.plot(epochs,df9.val_accuracy,'r',
label='Validation Accuracy')
plt.xticks(epochs)
plt.xlabel('Epochs")
plt.ylabel('Accuracy")

0.90 +

Accuracy

0.85 A

0.80 A

— Training Accuracy
—— Validation Accuracy

9

10 11
Epochs

T

16

T

17

18 19 20
Cesar Acosta Ph.D.

Plot Train and Validation Accuracy

acc_values = history_dict['accuracy']

val_acc_values = history_dict['val_accuracy'l]

plt.figure(figsize=(10,5))
plt.plot(epochs,df9.accuracy, 'b"',
label='Training Accuracy"')
plt.plot(epochs,df9.val_accuracy,'r',
label='Validation Accuracy')
plt.xticks(epochs)
plt.xlabel('Epochs")
plt.ylabel('Accuracy")

df9[df9.val_accuracy==df9.val_accuracy.max()]

loss accuracy val_loss val_accuracy

5 0.144871 0.954067 0.28409 0.8864

0.90 +

Accuracy

0.85 A

0.80 A

— Training Accuracy

—— Validation Accuracy

Underfitting

Overfitting .

T T T T T T

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs Cesar Acosta Ph.D.

Retrain the model from scratch (Use all the train set)

model = keras.Sequential([
layers.Dense(16,activation="relu'),
layers.Dense(16,activation="relu'),
layers.Dense(1,activation="'sigmoid")

1)

model.compile(optimizer="'rmsprop’,
loss='binary_crossentropy’,
metrics=['accuracy'])

model.fit(x_train,y_train,epochs=5,batch_size=512);

test_loss,test_acc

test_loss

0.3159539997577667
test accuracy rate

test_acc

0.8787999749183655

= model.evaluate(x_test,y test)

& Test accuracy rate

Cesar Acosta Ph.D.

Multiclass classification
- Reuters Dataset -

REUTERS DATASET

The objective is to classify
newswires into one of 46
topics (multiclass
classification problem)

The Reuters dataset has
11228 newswires already
split into train and test set

There are 8982 newswires
for training and 2246 for
testing

The data has already been
pre-processed.

Each newswire is a
paragraph (a sequence of
words)

Each word in the newswire
has been transformed into an
sequence of integers (where
each integer stands for a
specific word)

Cesar Acosta Ph.D.

ENCODING METHODS

Binary classification—A classification task where each input sample should
be categorized into two exclusive categories.

Muilticlass classification—A classification task where each input sample
should be categorized into more than two categories: for instance, classifying
handwritten digits.

There are two ways to handle labels in multiclass classification:
One-hotencoding — Encoding the labels via categorical encoding (also known as one-hot encod-
ing) and using categorical crossentropy as a loss function
Encoding the labels as integers and using the sparse categorical cross-

label encoding
entropy loss function

Cesar Acosta Ph.D.

NEURAL NETWORK FOR REUTERS Dataset

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from tensorflow import keras

from tensorflow.keras.utils import to_ categorical

from tensorflow.keras import layers
from tensorflow.keras.datasets import reuters

Cesar Acosta Ph.D.

NEURAL NETWORK FOR REUTERS Dataset

from tensorflow.keras.datasets import reuters

(train data, train labels),\ Rare words are to be discarded.

(test _data, test labels) = reuters.load data(num words=10000) Keep the top 10000 most frequently
occurring words in the train data set.

print(train data.shape,train labels.shape)

(8982,) (8982,)

print(test data.shape,test labels.shape)

(2246,) (2246,)

See 10th review topic from train set

train labels[10]
- 10" review is category 3

3 (there are 46 categories)
Cesar Acosta Ph.D.

NEURAL NETWORK FOR REUTERS Dataset

Encoding the input data

def vectorize sequences(sequences, dimension=10000):
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
for j in sequence:
results[i, j] = 1.
return results

X _train = vectorize sequences(train data)
x_test = vectorize sequences(test data)

print(x_train.shape,x test.shape)

(8982, 10000) (2246, 10000)

Cesar Acosta Ph.D.

NEURAL NETWORK FOR REUTERS Dataset

Encoding the labels

def to one hot(labels, dimension=46):
results = np.zeros((len(labels), dimension))
for i, label in enumerate(labels):
results[i, label] = 1.
return results

y_train = to _one hot(train labels)
y test = to_one hot(test_labels)

print(y train.shape,y test.shape)

(8982, 46) (2246, 46)

Cesar Acosta Ph.D.

NEURAL NETWORK FOR REUTERS Dataset

Encoding the labels

def to one hot(labels, dimension=46):
results = np.zeros((len(labels), dimension))
for i, label in enumerate(labels):
results[i, label] = 1.
return results

y_train = to _one hot(train labels)
y test = to_one hot(test_labels)

print(y train.shape,y test.shape)

(8982, 46) (2246, 46)

from tensorflow.keras.utils import to_categorical

y_train = to_categorical(train_ labels)
y_test = to _categorical(test labels)

print(y_train.shape,y test.shape)

(8982, 46) (2246, 46)

Cesar Acosta Ph.D.

NEURAL NETWORK FOR REUTERS Dataset

Build the model

model = keras.Sequential([
layers.Dense(64, activation="relu"),
layers.Dense (64, activation="relu"),
layers.Dense (46, activation="softmax")

1)
Compiling the model

model.compile(optimizer="rmsprop",
loss="categorical crossentropy",
metrics=["accuracy"])

< hidden layer Since the output layer is

< hidden layer g\i—)(ij(lin;]?dnj:;nlil'er with
& output layer yers

less than 46 hidden units

<& One-hot encoding

Cesar Acosta Ph.D.

NEURAL NETWORK FOR REUTERS Dataset

Validation

partial x train = x train[1000:] & Train set is made with the last 7982 newswires
y_train[1000:]

partial y train

x_val = x _train[:1000]
y val y_train[:1000]

& Validation set is made with the first 1000 newswires

Train the model
history = model.fit(partial x train,partial y train,

epochs=20,batch size=512,
validation data=(x_val, y val))

Cesar Acosta Ph.D.

TRAIN THE NEURAL NETWORK

history = model.fit(partial_x_train,partial_y_train,
epochs=20,batch_size=512,
validation_data=(x_val, y_val))

After calling £it the model will start to iterate on the training
data in batches of 512 observations, 20 times over (each
iteration over all the training data is called an epoch).

For each batch, the model will compute the gradient of the
loss and update the weights (in the gradient direction)
reducing the value of the loss for the batch.

There will be 7982/512 = 16 gradient updates per epoch.

After 20 epochs, the model will have performed 16 x 20 = 320
gradient updates.

We expect that the loss will be sufficiently low that the
model is capable of classifying the newswires with high
accuracy

Cesar Acosta Ph.D.

TRAIN THE NEURAL NETWORK

history = model.fit(partial_x_train,partial_y_train,
epochs=20,batch_size=512,
validation_data=(x_val, y_val))

history_dict = history.history
history_dict.keys()

dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])

Train Train

dfo = pd .DataFrame (histo ry_d ict) loss accuracy val_loss val_accuracy
df9.index = range(1,21) 1 2545177 0.490980 1.665100 0.639
2 1.391077 0.698822 1.258056 0.723

3 1.041145 0.775119 1.112869 0.752

4 0.825949 0.824355 1.017738 0.787

5 0.657540 0.866575 0.947129 0.795

6 0.528120 0.892007 0.901879 0.812

7 0.422487 0.912177 0.884048 0.814

8 0.347410 0.926084 0.954315 0.782

9 0.286693 0.934102 0.881968 0.823

10 0.240055 0.943122 0.927826 0.810

11
12
13
14
15
16
17
18
19
20

Train Train
loss accuracy val_loss val_accuracy
0.214139 0.946379 0.918055 0.828
0.182144 0.951641 0.945607 0.815
0.166701 0.953646 0.944044 0.816
0.152213 0.955024 0.986204 0.802
0.141612 0.955901 0.999093 0.804
0.130503 0.956652 1.062793 0.794
0.124488 0.958031 1.023027 0.807
0.118980 0.957780 1.039983 0.816
0.114638 0.958031 1.026351 0.824
0.110513 0.958031 1.053710 0.809

TRAIN THE NEURAL NETWORK

history = model.fit(partial_x_train,partial_y_train,
epochs=20,batch_size=512,
validation_data=(x_val, y_val))

history_dict = history.history
history_dict.keys()

dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])

loss accuracy

val_loss val_accuracy

Train Train
dfo = pd .DataFrame (histo ry dict) loss accuracy val_loss val_accuracy
df9.index = range(1,21) 1 2545177 0.490980 1.665100 0.639
2 1.391077 0.698822 1.258056 0.723
3 1.041145 0.775119 1.112869 0.752
4 0.825949 0.824355 1.017738 0.787
5 0.657540 0.866575 0.947129 0.795
df9[df9.val_loss==df9.val_loss.min()] 6 0.528120 0.892007 0.901879 0.812
7 0.422487 0.912177 0.884048 0.814
loss accuracy val_loss val_accuracy
8 0.347410 0.926084 0.954315 0.782
9 0.286693 0.934102 0.881968 0.823
9 0.286693 0.934102 0.881968 0.823
10 0.240055 0.943122 0.927826 0.810

11
12
13
14
15
16
17
18
19
20

11 0.214139 0.946379 0.918055

0.828

df9[df9.val_accuracy==df9.val_accuracy.max()]

Train Train
loss accuracy val_loss val_accuracy
0.214139 0.946379 0.918055 0.828
0.182144 0.951641 0.945607 0.815
0.166701 0.953646 0.944044 0.816
0.152213 0.955024 0.986204 0.802
0.141612 0.955901 0.999093 0.804
0.130503 0.956652 1.062793 0.794
0.124488 0.958031 1.023027 0.807
0.118980 0.957780 1.039983 0.816
0.114638 0.958031 1.026351 0.824
0.110513 0.958031 1.053710 0.809

Plot Train and Validation loss

df99 = df9.ilocl:,[0,2]]

df99.plot()
plt.xticks(epochs)
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()

To avoid overfitting train the NN for 9 epochs

df9[df9.val_loss==df9.val_loss.min()]

loss accuracy val_loss val_accuracy

9 0.286693 0.934102 0.881968 0.823

Loss

2.5

2.0

1.5 T

1.0 1

0.5 1

0.0

— loss
— val_loss

O

1011 12 1
Epochs

Ll 1 1 | 1

314151617 18 19 2

|l

0

Plot Train and Validation Accuracy

df99 = df9.ilocl[:, [1,3]]

df99.plot()
plt.xticks(epochs)
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend(loc=4)

To avoid overfitting train the NN for 11 epochs

df9[df9.val_accuracy==df9.val_accuracy.max()]

loss accuracy val_loss val_accuracy

11 0.214139 0.946379 0.918055 0.828

0.9 -

0.6 -

0.5 1

— accuracy
- val_accuracy

O -

T T T T T T T T T T

10 11 12 13 14 15 16 17 18 19 20
Epochs

Retrain a model from scratch (11 epochs)

model = keras.Sequential([
layers.Dense(64, activation="relu"),
layers.Dense(64, activation="relu"),
layers.Dense(46, activation="softmax")

1)

model.compile(optimizer="rmsprop",
loss="categorical_crossentropy",
metrics=["accuracy"])

model.fit(x_train,y_train,epochs=11,batch_size=512);

test loss,test_acc = model.evaluate(x test,y test)

test_loss

0.9902769923210144

test_acc

0.7960819005966187 & Test accuracy rate

Cesar Acosta Ph.D.

