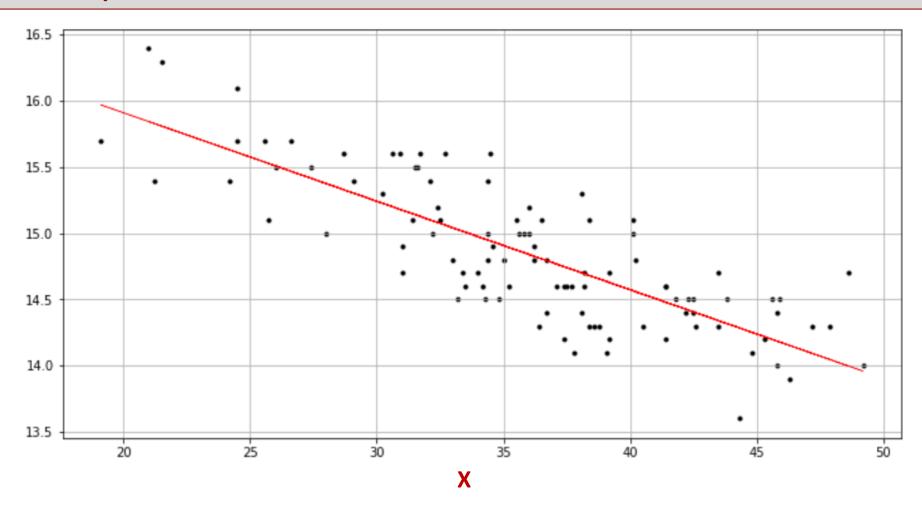
Multiple Linear Regression

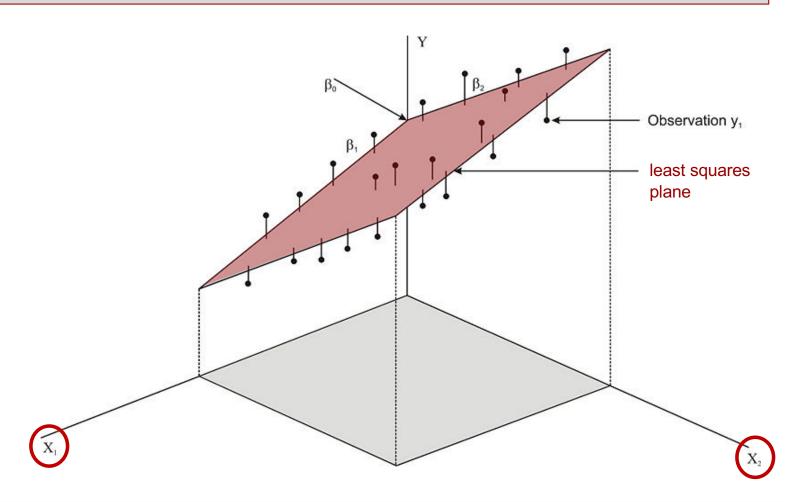
OVERVIEW

- Introduction
- How good is the Regression Model?
- R-square
- Comparing Regression Models (Adj R², AIC)
- Libraries sklearn, statsmodels

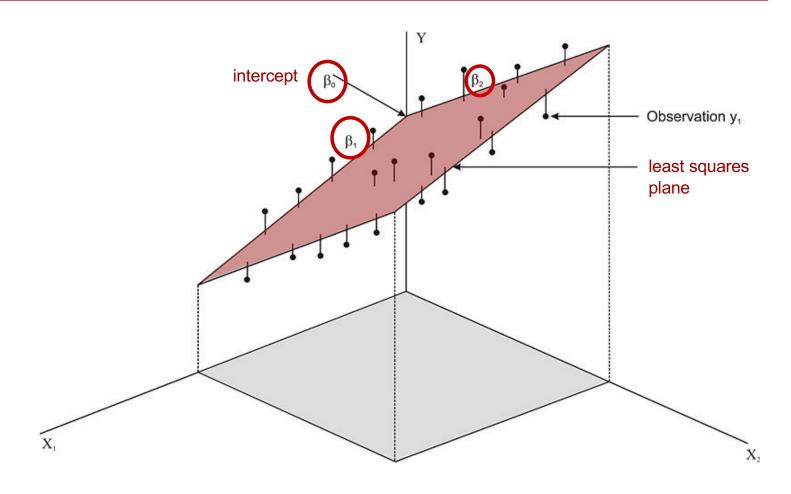
OLS – one predictor X



OLS - Two predictors X₁ and X₂

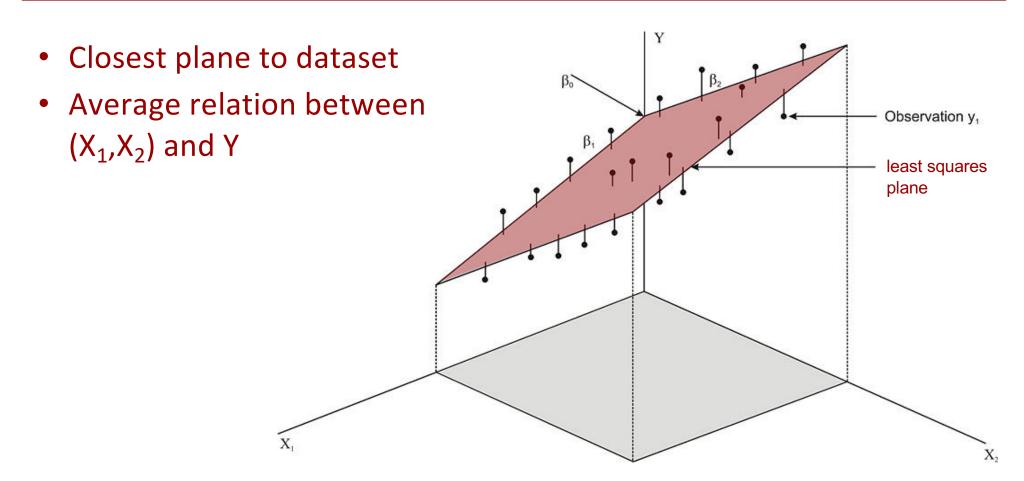


Two predictors X₁ and X₂



What is the OLS plane?

OLS plane



Multiple Linear Regression (MLR)

Consider p predictors X₁, X₂,...,X_p

Regression plane $E[Y] = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$ (unknown)

Multiple Linear Regression

Consider p predictors X₁, X₂,...,X_p

Regression plane

$$E[Y] = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

(unknown)

OLS plane

$$\hat{Y} = b_0 + b_1 X_1 + \dots + b_p X_p$$

Model performance

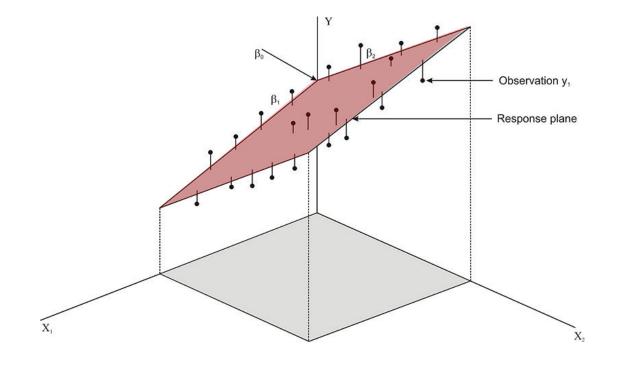
How good is the regression model?

How well the model fits the data?

How well the model predicts the data?

How well the model fits the data?

Model fits the data well if the regression plane is close to the data underlying pattern



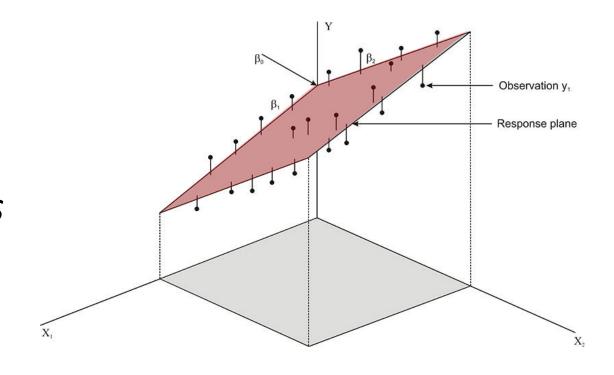
How well the model predicts the data?

Model is a good

predictor if it

accurately predicts

new data



How good is the regression model?

- How well the model fits the data?
 Model adequacy measures: SSE, R²
- How well the model predicts the data?
 Cross Validation measures: MSPE

What is R-squared?

Model adequacy

 R^2 is the proportion of the variation in Y that is explained by a linear model with predictors $X_1, X_2, ..., X_p$

The larger the better

R² is the fraction of changes in Y that is explained by X

R² is always between 0 and 1

0 means that no changes in Y are explained by X

1 means all changes in Y are explained by X

(a perfect fit to the data)

R² is also called

Coefficient of multiple determination,

Coefficient determination,

Multiple R-squared

How is R-squared computed?

R-squared is the result of ANOVA decomposition

- SST Total Sum of Squares
- SSE Residuals Sum of Squares or Error Sum of Squares
- SSR Regression Sum of Squares

$$SST = SSE + SSR$$

← ANOVA Decomposition

TOTAL SUM OF SQUARES

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

This quantity is the same for all possible models

TOTAL SUM OF SQUARES

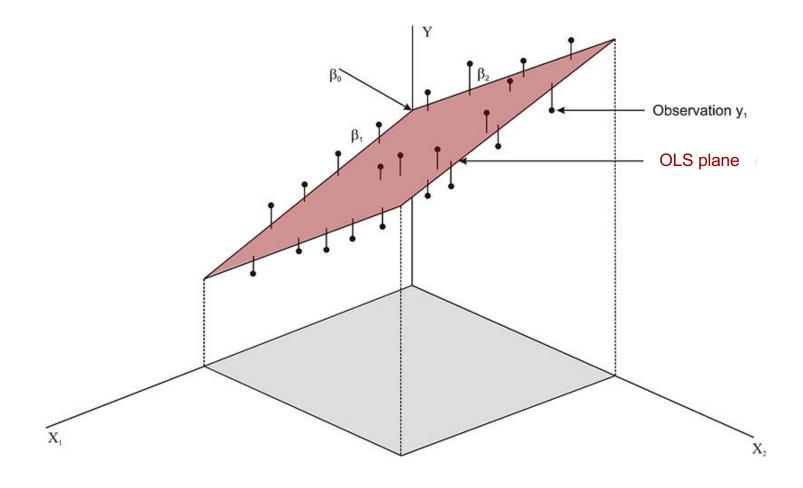
	X1	X2	Υ	(Y-Ybar)^2
1				
2				
N				
			Ybar	SST

- No model is needed to compute this quantity
- It is a constant for the dataset

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

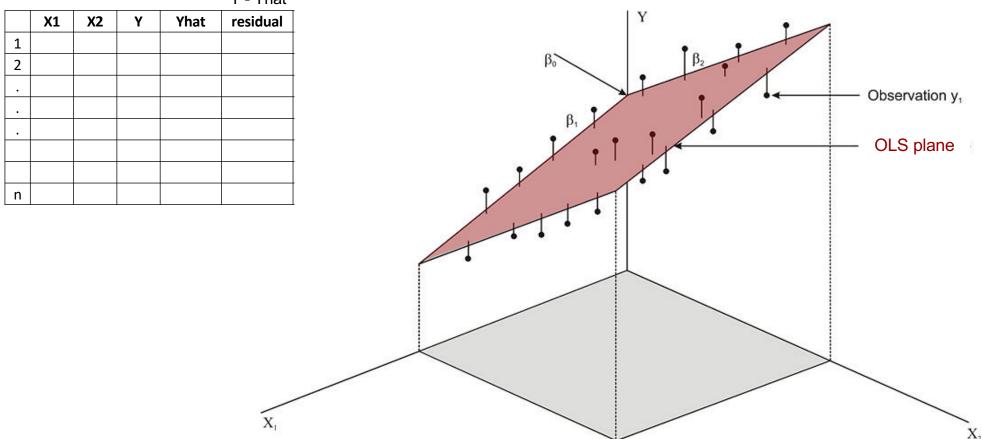
OLS plane

	X1	X2	Υ
1			
2			
			·
n			



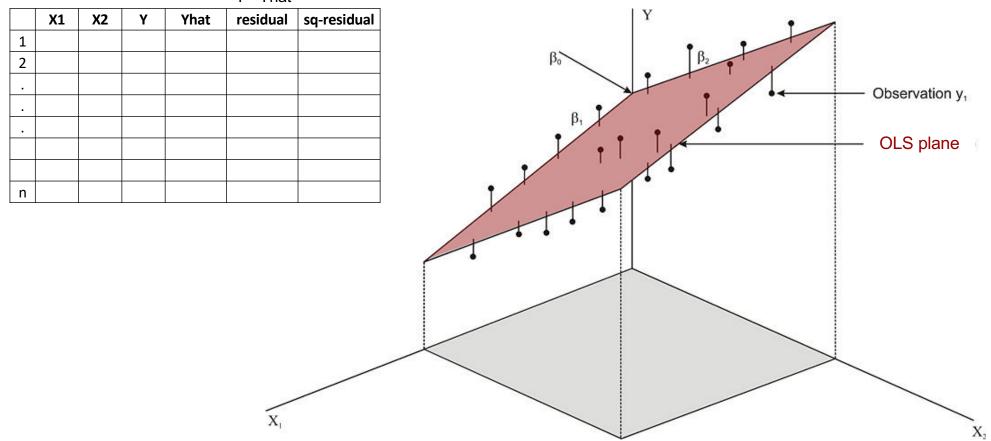
RESIDUALS

Y - Yhat

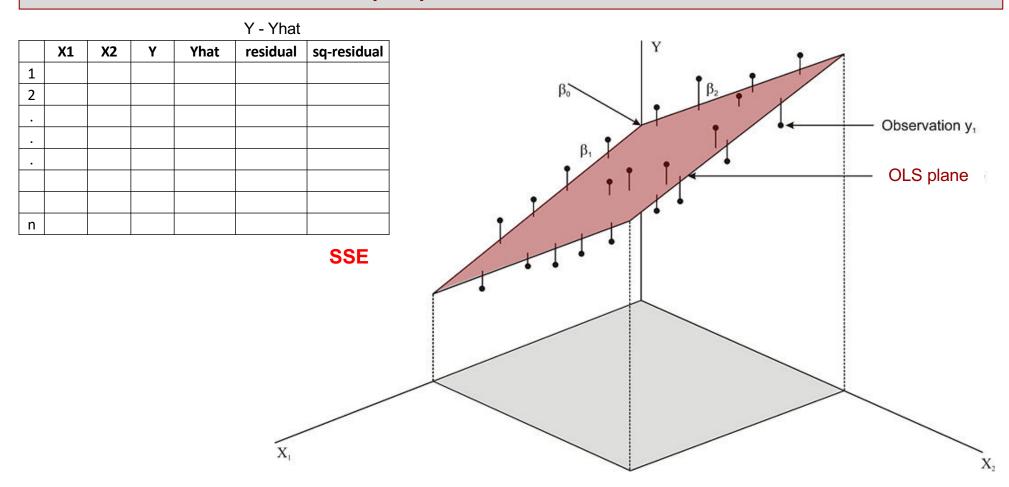


SQUARED RESIDUALS

Y - Yhat



RESIDUAL SUM OF SQUARES (SSE)



Analytics

ANOVA Decomposition

$$SST = SSE + SSR$$

How far is y_i from its mean?

$$y_i - \overline{y} =$$

$$y_i - \overline{y} = y_i - \hat{y}_i + \hat{y}_i - \overline{y}$$

How far is y_i from its mean?

$$y_i - \overline{y} =$$

$$y_i - \overline{y} = y_i - \hat{y}_i + \hat{y}_i - \overline{y}$$

$$y_i - \overline{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})$$

How far is y_i from its mean?

$$y_i - \overline{y} =$$

$$y_i - \overline{y} = y_i - \hat{y}_i + \hat{y}_i - \overline{y}$$

$$y_i - \overline{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})$$

$$(y_i - \overline{y})^2 = [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2$$

TOTAL VARIABILITY OF Y

$$(y_i - \overline{y})^2 = [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2$$

$$\sum_{i=1}^n (y_i - \overline{y})^2 = \sum_{i=1}^n [\underline{(y_i - \hat{y_i})} + \underline{(\hat{y_i} - \overline{y})}]^2$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} [\underbrace{(y_i - \hat{y_i})}_{\mathbf{a}} + \underbrace{(\hat{y_i} - \overline{y})}_{\mathbf{b}}]^2 = \sum_{i=1}^{n} \mathbf{a}^2 + \mathbf{b}^2 + 2\mathbf{a}\mathbf{b}$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} [\underline{(y_i - \hat{y_i})} + \underline{(\hat{y_i} - \overline{y})}]^2$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} \underbrace{(y_i - \hat{y_i})^2}_{\text{a}^2} + \sum_{i=1}^{n} \underbrace{(\hat{y_i} - \overline{y})^2}_{\text{b}^2} + 2 \sum_{i=1}^{n} \underbrace{(y_i - \hat{y_i})(\hat{y_i} - \overline{y})}_{\text{ab}}$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + 2 \sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \overline{y})$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} e_i^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

$$SST = SSE + SSR$$

Total sum of squares

Residual sum of squares

Regression sum of squares

ANOVA DECOMPOSITION, R-squared

$$SST = SSE + SSR$$

- SSE and SSR are in [0,1] always
- If one increases the other decreases
- SST is the same for all possible models
- SSE, SSR change with different models
- Best models give small SSE (and thus, large SSR)

R-squared definition

.

$$SST = SSE + SSR$$

$$= \text{small} \quad \text{large}$$

$$1 = \frac{SSE}{SST} + \frac{SSR}{SST}$$

R-squared definition

$$SSTotal =$$

$$SSE + SSR$$

$$\frac{SSE}{SST}$$

$$+ \frac{SSR}{SST}$$

$$= \frac{SSE}{SST}$$

$$R^2$$

R-squared definition

$$SSTotal =$$

$$SSE + SSR$$

$$\frac{SSE}{SST}$$

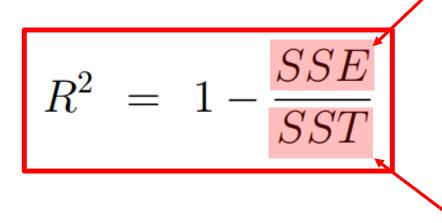
$$+ \frac{SSR}{SST}$$

$$= \frac{SSE}{SST}$$

R-squared formula

$$R^2 = 1 - \frac{SSE}{SST}$$

R-squared formula



This quantity changes with different models

This quantity is the same for all models

Analytics

R-squared formula

$$R^2 = 1 - \frac{SSE}{SST}$$

- Small SSE gives large R²
- Adding more predictors to the regression model decreases SSE, always

Goodness of Fit

The least squares method always produces a straight line or plane, even

- if there is no relationship between the variables, or
- if the relationship is non-linear

Goodness of Fit

The least squares method always produces a straight line or plane, even

- if there is no relationship between the variables, or
- if the relationship is non-linear

Hence, in addition to building the model, we need to measure how well the model "fits" the data.

Comparing Regression Models

Comparing Regression Models

- R-squared
- Adjusted R-squared
- AIC

- R² useful to compare models
 with the same number p of predictors
- R² not useful to compare models
 with different number p of predictors
 since R² increases with p, always

Consider 6 predictors X₁, X₂,...,X₆ and 2 models

Yhat =
$$b_0 + b_1 X_1 + b_3 X_3 + b_6 X_6$$

Yhat =
$$b_0 + b_2 X_2 + b_4 X_4 + b_5 X_5$$

These models have same number of predictors thus we can compare these models using R²

Consider 8 predictors X₁, X₂,...,X₈ and 2 models

Yhat =
$$b_0 + b_1 X_1 + b_3 X_3 + b_6 X_6$$

Yhat =
$$b_0 + b_2 X_2 + b_4 X_4 + b_5 X_5 + b_7 X_7 + b_8 X_8$$

These models have different number of predictors We cannot compare these models using R²

How to compare models with different number of predictors?

- Adjusted R² (larger is better)
- AIC (smaller is better)

R-squared vs adj R-squared - interpretation

• $100R^2$ the percentage of variation in Y that is explained by the model

Adjusted R² has no interpretation

How is Adjusted R-squared computed?

MEAN SQUARES

- MST Total Mean Square
- MSE Mean Square Error
- MSR Regression Mean Square

Formulas for Mean Squares

$$MST = \frac{SST}{n-1} \qquad \qquad \text{= variance of Y}$$

$$MSR = \frac{SSR}{p}$$

$$MSE = \frac{SSE}{n - p - 1}$$

Formulas for Mean Squares

$$MST = \frac{SST}{n-1} \qquad \qquad \text{= variance of Y}$$

$$MSR = \frac{SSR}{n-1}$$

$$MSE = \frac{SSE}{n-1}$$

.

$$SST = SSE + SSR$$

$$\frac{SST}{n-1} = \frac{SSE}{n-1} + \frac{SSR}{n-1}$$

$$MST \approx MSE + MSR$$

approximately

.

$$SST = SSE + SSR$$

$$\frac{SST}{n-1} = \frac{SSE}{n-1} + \frac{SSR}{n-1}$$

$$MST \approx MSE + MSR$$

approximately

$$1 = \frac{MSE}{MST} + \frac{MSR}{MST}$$

$$1 = \frac{MSE}{MST} + adj R^2$$

.

$$SST = SSE + SSR$$

$$\frac{SST}{n-1} = \frac{SSE}{n-1} + \frac{SSR}{n-1}$$

$$MST \approx MSE + MSR$$

approximately

$$1 = \frac{MSE}{MST} + \frac{MSR}{MST}$$

$$1 = \frac{MSE}{MST} + adj R^2$$

FORMULAS

$$R^2 = 1 - \frac{SSE}{SST}$$

$$adj R^2 \approx 1 - \frac{MSE}{MST}$$

ANOVA Table

ANOVA Table for **SLR**

SST = SSE + SSR

$$MST = \frac{SST}{n-1}$$

$$MSR = \frac{SSR}{p}$$

$$MSE = \frac{SSE}{n - p - 1}$$

variance of Y

ANOVA Table for **SLR**

$$SST = SSE + SSR$$

$$MST = \frac{SST}{n-1}$$

$$MSR = \frac{SSR}{I}$$

$$MSE = \frac{SSE}{n-2}$$

variance of Y

	degrees of freedom	Sum of squares	Mean squares	F stat	p-value
Predictor	1	SSR	MSR	MSR/MSE	
Residual	n-2	SSE	MSE		
Total	n-1	SST	MST		

Useful measures from the ANOVA TABLE

```
import statsmodels.api as sm
table1 = sm.stats.anova_lm(m2)
table1
```

	df	sum_sq	mean_sq	F	PR(>F)
Odometer	1.0	19.255607	19.255607	180.642989	5.750781e-24
Residual	98.0	10.446293	0.106595		
		SSE	MSE		

Useful measures from the ANOVA TABLE

```
import statsmodels.api as sm
table1 = sm.stats.anova_lm(m2)
table1
```

	df	sum_sq	mean_sq	F	PR(>F)
Odometer	1.0	19.255607	19.255607	180.642989	5.750781e-24
Residual	98.0	10.446293	0.106595		

 $S = \sqrt{MSE} = 0.3265$

average distance to regression line

Example – ANOVA TABLE

```
import statsmodels.api as sm
table1 = sm.stats.anova_lm(m2)
table1
```

	sum_sq	mean_sq	F	PR(>F)
Odometer	SSR = 19.255607	19.255607	180.642989	5.750781e-24
Residual	SSE = 10.446293	0.106595		
Total	SST = 29.7019			

 $R^2 = 1 - (SSE/SST) = 1 - (10.4463/29.7019) = 0.6483$

Example – ANOVA TABLE

```
import statsmodels.api as sm
table1 = sm.stats.anova_lm(m2)
table1
```

		sum_sq	mean_sq	F	PR(>F)
Odometer	1.0	19.255607	19.255607	180.642989	5.750781e-24
Residual	98.0	10.446293	0.106595		
Total	99	29.7019	MST = 29.7	7019 / 99 = 0.30)
Adj $R^2 = 1 - (MSE/MST) = 1 - (0.106595/0.30) = 0.6447$					

ANOVA Table for MLR

$$MST = \frac{SST}{n-1}$$

$$MSR = \frac{SSR}{p}$$

$$MSE = \frac{SSE}{n - p - 1}$$

variance of Y

ľ		degrees of freedom	Sum of squares	Mean squares	F stat	p-value
ľ	Predictor	р	SSR	MSR	MSR/MSE	
	Residual	n-p-1	SSE	MSE		
	Total	n-1	SST	MST		

What is AIC?

Akaike Information Criteria (AIC)

- Measures the loss of information by fitting a model from a sample (and not from the population)
- For MLR the AIC is

$$AIC = n \log \left(\frac{SSE}{n}\right) + 2p$$

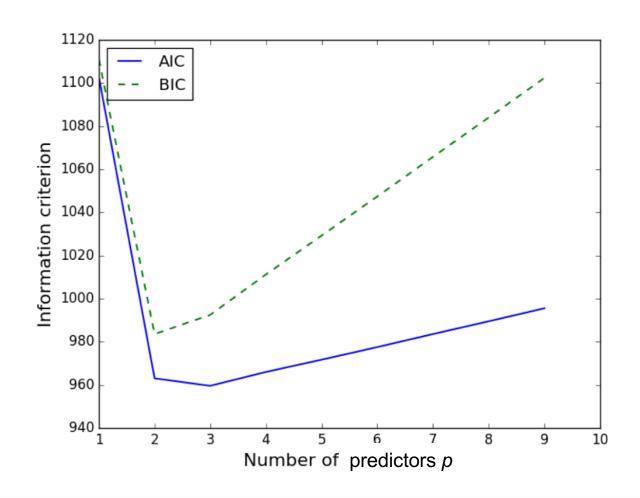
Akaike Information Criteria (AIC)

- Since it measures a loss, we prefer models with small AIC
- It makes a balance between SSE and p

$$AIC = n \log \left(\frac{SSE}{n}\right) + 2p$$

Akaike Information Criteria (AIC)

Choose the model with the smallest *AIC*



MULTIPLE LINEAR REGRESSION

- R² depends on SSE only,
 therefore it is useful to compare models with the same number p of predictors
- Adj-R² and AIC depend on SSE and p, therefore they are useful to compare models with different number p of predictors

EXAMPLE Cars93 dataset

- Fit a MLR Model to predict the city mileage, MPG.city, of a car using as predictors the car's weight, horsepower, RPM, engine size, number of cylinders, and number of passengers
- Predict the city mileage of a 6-passenger car with 2800 pounds, 6 cylinders, 150 HP, 6600 RPM, and 1.9 engine size

Response

	MPG.city	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	25	4	1.8	140	6300	5	2705
1	18	6	3.2	200	5500	5	3560
2	20	6	2.8	172	5500	5	3375
3	19	6	2.8	172	5500	6	3405
4	22	4	3.5	208	5700	4	3640

df1.dtypes

MPG.city int64
Cylinders object
EngineSize float64
Horsepower int64
RPM int64
Passengers int64
Weight int64

Why is Cylinders not numeric?

	MPG.city	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	25	4	1.8	140	6300	5	2705
1	18	6	3.2	200	5500	5	3560
2	20	6	2.8	172	5500	5	3375
3	19	6	2.8	172	5500	6	3405
4	22	4	3.5	208	5700	4	3640

```
# Only one car with rotary cylinder

df1[df1.Cylinders == 'rotary']
```

	MPG.city	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
56	17	rotary	1.3	255	6500	2	2895

```
# remove it
```

df2 = df1[df1.Cylinders != 'rotary'].copy()

to int64
df2.Cylinders = df2.Cylinders.astype('int64')
df2.dtypes

change the

data type

MPG.city	int64
Cylinders	int64
EngineSize	float64
Horsepower	int64
RPM	int64
Passengers	int64
Weight	int64

```
y0 = df2['MPG.city']

X0 = df2.drop(columns = 'MPG.city', axis = 1)

Response in a Series

Predictors in a DataFrame
```

library sklearn

```
y0 = df2['MPG.city']
X0 = df2.drop(columns = 'MPG.city',axis = 1)
X0[:5]
```

	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	4	1.8	140	6300	5	2705
1	6	3.2	200	5500	5	3560
2	6	2.8	172	5500	5	3375
3	6	2.8	172	5500	6	3405
4	4	3.5	208	5700	4	3640

← X0.columns

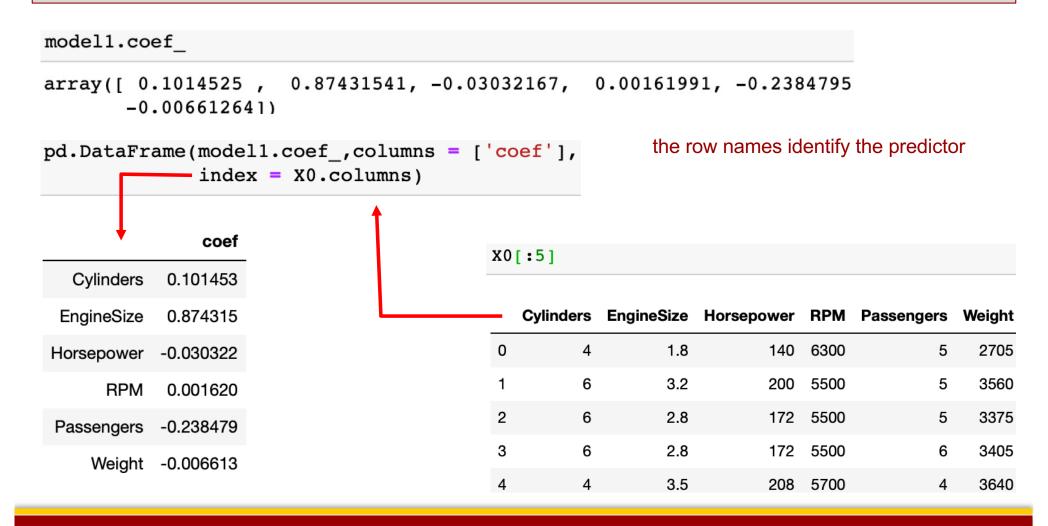
```
y0 = df2['MPG.city']
X0 = df2.drop(columns = 'MPG.city', axis = 1)
from sklearn.linear model import LinearRegression
model1 = LinearRegression().fit(X0,y0)
model1.intercept
36,91997468801334
model1.coef
array([ 0.1014525 , 0.87431541, -0.03032167, 0.00161991, -0.2384795
      -0.006612641
```

not clear what coefficient belongs to each predictor

coef

Cylinders	0.101453
EngineSize	0.874315
Horsepower	-0.030322
RPM	0.001620
Passengers	-0.238479
Weight	-0.006613

with this DataFrame it is clear what coefficient belongs to each predictor



Predict the city mileage of a car with

- 6 cylinders
- 1.9 Engine Size
- 150 HP
- 6600 RPM
- 6 Passengers
- Weight 2800 pounds

Predict the city mileage of a car with

- 6 cylinders
- 1.9 Engine Size
- 150 HP
- 6600 RPM
- 6 Passengers
- Weight 2800 pounds

X0[:5]

	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	4	1.8	140	6300	5	2705
1	6	3.2	200	5500	5	3560
2	6	2.8	172	5500	5	3375
3	6	2.8	172	5500	6	3405
4	4	3.5	208	5700	4	3640

 creating a one-row dataframe with the 1st row of X0

	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	4	1.8	140	6300	5	2705

```
newvalue = X0[:1].copy()
newvalue
```

CylindersEngineSizeHorsepowerRPMPassengersWeight041.8140630052705

```
newvalue.Cylinders = 6
newvalue.EngineSize = 1.9
newvalue.Horsepower = 150
newvalue.RPM = 6600
newvalue.Passengers = 6
newvalue.Weight = 2800
newvalue
```

	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	6	1.9	150	6600	6	2800

- creating a one-row dataframe
 with the 1st row of X0
- .copy() is needed since this new dataframe is to be modified

```
newvalue = X0[:1].copy()
newvalue
```

Cylinders EngineSize Horsepower RPM Passengers Weight 0 4 1.8 140 6300 5 2705

```
newvalue.Cylinders = 6
newvalue.EngineSize = 1.9
newvalue.Horsepower = 150
newvalue.RPM = 6600
newvalue.Passengers = 6
newvalue.Weight = 2800
newvalue
```

	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	6	1.9	150	6600	6	2800

- creating a one-row dataframe
 with the 1st row of X0
- .copy() is needed since this new dataframe is to be modified
- Column of ones not needed with sklearn

predict city mileage

```
model1.predict(newvalue)
array([25.38678406])
```

library statsmodels.api

Analytics

EXAMPLE 1

X0[:5]

	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	4	1.8	140	6300	5	2705
1	6	3.2	200	5500	5	3560
2	6	2.8	172	5500	5	3375
3	6	2.8	172	5500	6	3405
4	4	3.5	208	5700	4	3640

↑ need to insert a **column of ones**

EXAMPLE 1 – statsmodels.api

X0[:5]

	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	4	1.8	140	6300	5	2705
1	6	3.2	200	5500	5	3560
2	6	2.8	172	5500	5	3375
3	6	2.8	172	5500	6	3405
4	4	3.5	208	5700	4	3640

	const	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	1	4	1.8	140	6300	5	2705
1	1	6	3.2	200	5500	5	3560
2	1	6	2.8	172	5500	5	3375
3	1	6	2.8	172	5500	6	3405
4	1	4	3.5	208	5700	4	3640

EXAMPLE 1 – statsmodels.api – build model

```
m1 = sm.OLS(y0,X1).fit()
m1.summary()
```

OLS Regression Results

Dep. Variable:	MPG.city	R-squared:	0.732
Model:	OLS	Adj. R-squared:	0.713
Method:	Least Squares	F-statistic:	38.61

	coef	std err	t	P> t	[0.025	0.975]
const	36.9200	7.294	5.062	0.000	22.417	51.423
Cylinders	0.1015	0.570	0.178	0.859	-1.031	1.234
EngineSize	0.8743	1.076	0.813	0.419	-1.264	3.013
Horsepower	-0.0303	0.023	-1.344	0.183	-0.075	0.015
RPM	0.0016	0.001	1.418	0.160	-0.001	0.004
Passengers	-0.2385	0.540	-0.441	0.660	-1.313	0.836
Weight	-0.0066	0.002	-4.006	0.000	-0.010	-0.003

compare to sklearn model1

coef

Cylinders	0.101453
EngineSize	0.874315
Horsepower	-0.030322
RPM	0.001620
Passengers	-0.238479
Weight	-0.006613

EXAMPLE 1 – statsmodels.api

```
ml.params
               36,919975
const
Cylinders
                0.101453
EngineSize
                0.874315
Horsepower
               -0.030322
RPM
                0.001620
               -0.238479
Passengers
Weight
               -0.006613
dtype: float64
# yhat = 36.92 + 0.1014 Cylinders + 0.874 EngineSize
                                                                 regression equation
                -0.03 Horsepower + 0.0016 RPM
                -0.2385 Passengers -0.0066 Weight
# interpret equation
  Average
# City mileage increases by 0.1014 for each additional cylinder
                                                           if all other variables do not change
  Average
# City mileage decreases by 0.0066 for each additional pound
                                                           if all other variables do not change
```

EXAMPLE 1 – statsmodels.api Prediction

newvalue

	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	6	1.9	150	6600	6	2800

```
newvalue.insert(0, 'constant',1)
newvalue
```

	constant	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	1	6	1.9	150	6600	6	2800

m1.predict(newvalue)

0 25.386784

EXAMPLE 1 – statsmodels.api Prediction

newvalue

	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	6	1.9	150	6600	6	2800

newvalue.insert(0, 'constant',1)
newvalue

	constant	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	1	6	1.9	150	6600	6	2800

ml.predict(newvalue)

0 25.386784

predicted with sklearn

model1.predict(newvalue)

array([25.38678406])

EXAMPLE 1 – statsmodels.api Prediction, and 90% CI and PI

newvalue

	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	6	1.9	150	6600	6	2800

get CI and PI

d2 = m1.get_prediction(newvalue)
d2.summary_frame(alpha = 0.10)

 mean
 mean_se
 mean_ci_lower
 mean_ci_upper
 obs_ci_lower
 obs_ci_upper

 0
 25.386784
 1.439436
 22.993032
 27.780536
 19.832545
 30.941024

EXAMPLE 1 – statsmodels.api

Prediction, 90% CI, and PI

newvalue

	Cylinders	EngineSize	Horsepower	RPM	Passengers	Weight
0	6	1.9	150	6600	6	2800

get CI and PI

d2 = m1.get_prediction(newvalue)
d2.summary frame(alpha = 0.10)

 mean
 mean_se
 mean_ci_lower
 mean_ci_upper
 obs_ci_lower
 obs_ci_upper

 0
 25.386784
 1.439436
 22.993032
 27.780536
 19.832545
 30.941024

Confidence Interval

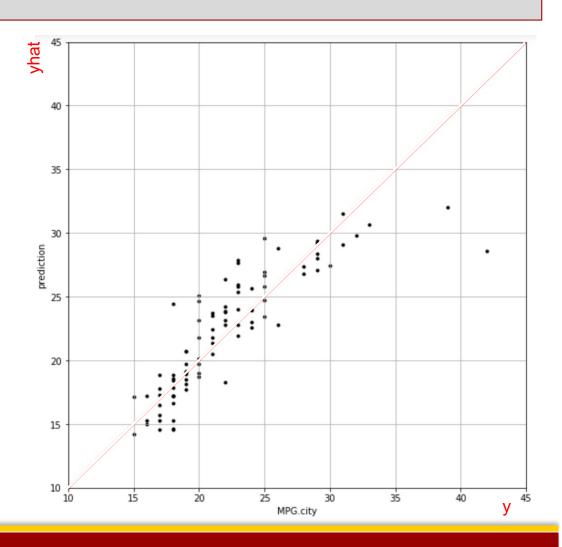
Prediction Interval

predict city mileage for each car in the dataset

```
yhat = m1.fittedvalues
```

display the scatterplot

```
plt.figure(figsize = (9,9))
plt.scatter(y0,yhat,s=9,color='k')
```



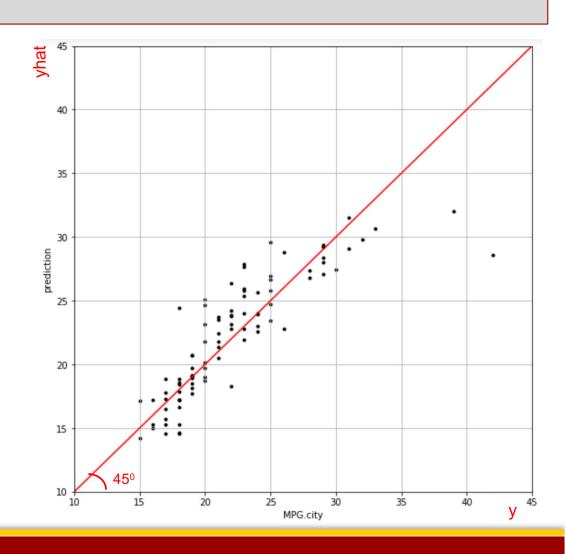
predict city mileage for each car in the dataset

```
yhat = m1.fittedvalues

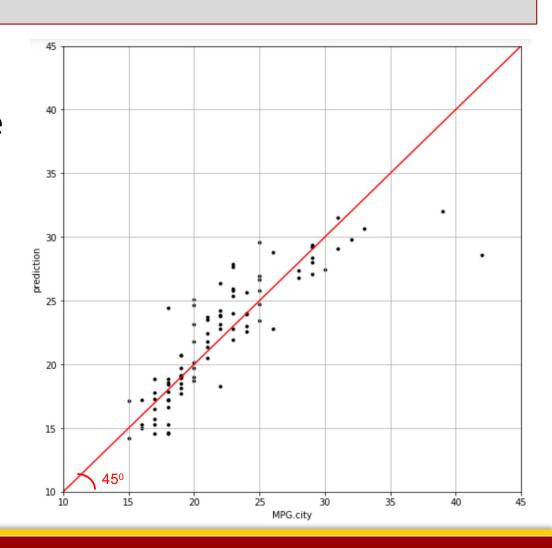
# Divide (10,45) into 100 segments
# Store values in xvals

xvals = np.linspace(10,45,100)
yvals = xvals
```

```
plt.figure(figsize = (9,9))
plt.scatter(y0,yhat,s=9,color='k')
# plot diagonal line
plt.plot(xvals,yvals,color='r')
plt.xlim(10,45)
plt.ylim(10,45)
```



We would have a perfect fit if all points lie on the 45° line



We would have a perfect fit if all points lie on the 45⁰ line

For this model, R² is 0.732

Thus, this set of predictors explain 73.2% of MPG variability

```
m1 = sm.OLS(y0,X1).fit()
m1.summary()
```

OLS Regression Results

Cylinders 0.1015 0.570 0. EngineSize 0.8743 1.076 0. Horsepower -0.0303 0.023 -1. RPM 0.0016 0.001 1.								
Method: Least Squares coef std err const 36.9200 7.294 5. Cylinders 0.1015 0.570 0. EngineSize 0.8743 1.076 0. Horsepower -0.0303 0.023 -1. RPM 0.0016 0.001 1.	Dep. Variable:		MPG.c	MPG.city		R-squared:		0.732
coef std err const 36.9200 7.294 5. Cylinders 0.1015 0.570 0. EngineSize 0.8743 1.076 0. Horsepower -0.0303 0.023 -1. RPM 0.0016 0.001 1.		lel:	0	LS	Ad	j. R-sqı	uared:	0.713
const 36.9200 7.294 5. Cylinders 0.1015 0.570 0. EngineSize 0.8743 1.076 0. Horsepower -0.0303 0.023 -1. RPM 0.0016 0.001 1.	_ea	od: Le	ast Squar	res		F-sta	tistic:	38.61
Cylinders 0.1015 0.570 0. EngineSize 0.8743 1.076 0. Horsepower -0.0303 0.023 -1. RPM 0.0016 0.001 1.	ef	coef	std err		t	P> t	[0.025	0.975]
EngineSize 0.8743 1.076 0. Horsepower -0.0303 0.023 -1. RPM 0.0016 0.001 1.	0	36.9200	7.294	5.0	62	0.000	22.417	51.423
Horsepower -0.0303 0.023 -1. RPM 0.0016 0.001 1.	5	0.1015	0.570	0.1	78	0.859	-1.031	1.234
RPM 0.0016 0.001 1.	3	0.8743	1.076	0.8	313	0.419	-1.264	3.013
	3	-0.0303	0.023	-1.3	344	0.183	-0.075	0.015
Passengers -0.2385 0.540 -0.	6	0.0016	0.001	1.4	118	0.160	-0.001	0.004
	5	-0.2385	0.540	-0.4	141	0.660	-1.313	0.836
Weight -0.0066 0.002 -4.	6	-0.0066	0.002	-4.0	006	0.000	-0.010	-0.003

Questions to be answered

- What are the best predictors?
- How good is the model for prediction?