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OVERVIEW

• Introduction
• How good is the Regression Model?
• R-square
• Comparing Regression Models (Adj R2, AIC)
• Libraries sklearn, statsmodels
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OLS – one predictor X 

X
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OLS - Two predictors X1 and X2

least squares 
plane
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Two predictors X1 and X2

intercept

least squares 
plane
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What is the OLS plane?



Cesar Acosta Ph.D.

Analytics

OLS plane 

• Closest plane to dataset
• Average relation between 

(X1,X2) and Y
least squares 
plane
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Multiple Linear Regression (MLR) 

Consider p predictors X1, X2,…,Xp 
 
Regression plane
(unknown)
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Multiple Linear Regression 

Consider p predictors X1, X2,…,Xp 
 
Regression plane
(unknown)

OLS plane
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Model performance

How good is the regression model?

• How well the model fits the data?

• How well the model predicts the data?
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How well the model fits the data?

Model fits the 
data well if the 
regression plane is 
close to the data 
underlying pattern
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How well the model predicts the data?

Model is a good 

predictor if it 

accurately predicts 

new data
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How good is the regression model?

• How well the model fits the data?

• How well the model predicts the data?
Model adequacy measures: SSE, R2

Cross Validation measures: MSPE
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What is R-squared?
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Model adequacy 

R2 is the proportion of the variation in Y 
that is explained by 

a linear model with predictors X1, X2,…,Xp 

The larger the better
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R2 is the fraction of changes in Y that is explained by X

R2 is always between 0 and 1

     0  means that no changes in Y are explained by X

     1  means all changes in Y are explained by X 

         (a perfect fit to the data)

R2 is also called   

  Coefficient of multiple determination,

  Coefficient determination,

  Multiple R-squared
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How is R-squared computed?

R-squared is the result of
ANOVA decomposition
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ANOVA DECOMPOSITION

• SST Total Sum of Squares
• SSE Residuals Sum of Squares or

  Error Sum of Squares
• SSR Regression Sum of Squares

• SST = SSE + SSR ← ANOVA Decomposition
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TOTAL SUM OF SQUARES

       SST  =

This quantity is the same for all possible models
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SST = 

TOTAL SUM OF SQUARES

• No model is needed
• to compute this quantity
• It is a constant for the dataset
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OLS plane

X1 X2 Y Yhat residual sq-residual
1
2
.
.
.

n

OLS plane 
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RESIDUALS

X1 X2 Y Yhat residual sq-residual
1
2
.
.
.

n

Y - Yhat

OLS plane 
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SQUARED RESIDUALS

X1 X2 Y Yhat residual sq-residual
1
2
.
.
.

n

Y - Yhat

OLS plane 
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RESIDUAL SUM OF SQUARES (SSE)

X1 X2 Y Yhat residual sq-residual
1
2
.
.
.

n

SSE

Y - Yhat

OLS plane 
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ANOVA Decomposition

SST = SSE + SSR
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How far is yi from its mean?
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How far is yi from its mean?
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How far is yi from its mean?



Cesar Acosta Ph.D.

Analytics

TOTAL VARIABILITY OF Y



Cesar Acosta Ph.D.

Analytics

ANOVA DECOMPOSITION 
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ANOVA DECOMPOSITION 

=  a2 + b2 + 2ab
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ANOVA DECOMPOSITION 

a   b

a2      b2      ab
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ANOVA DECOMPOSITION 

0
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ANOVA DECOMPOSITION 
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ANOVA DECOMPOSITION 
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ANOVA DECOMPOSITION 

Residual RegressionTotal
sum of squares sum of squares sum of squares
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ANOVA DECOMPOSITION,   R-squared 

• SSE and SSR are in [0,1] always

• If one increases the other decreases

• SST is the same for all possible models

• SSE, SSR change with different models

• Best models give small SSE (and thus, large SSR)
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R-squared definition

.

small   large



Cesar Acosta Ph.D.

Analytics

R-squared definition
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R-squared definition
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R-squared formula
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R-squared formula

This quantity changes 
with different models

This quantity is the 
same for all models
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R-squared formula

• Small SSE gives large R2

• Adding more predictors to 
the regression model  
decreases SSE, always
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Goodness of Fit 

The least squares method always produces a 
straight line or plane, even

• if there is no relationship between the 
variables, or 

• if the relationship is non-linear
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Goodness of Fit 

The least squares method always produces a 
straight line or plane, even

• if there is no relationship between the 
variables, or 

• if the relationship is non-linear
Hence, in addition to building the model,
we need to measure how well the model “fits” the 
data. 
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Comparing Regression Models
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Comparing Regression Models

• R-squared

• Adjusted R-squared

• AIC
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MULTIPLE LINEAR REGRESSION

• R2 useful to compare models 
 with the same number p of predictors

• R2 not useful to compare models 
 with different number p of predictors
 since R2 increases with p, always
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MULTIPLE LINEAR REGRESSION

Consider 6 predictors X1, X2,…,X6  and 2 models

Yhat = b0 + b1 X1 + b3 X3 + b6 X6 

Yhat = b0 + b2 X2 + b4 X4 + b5 X5 

These models have same number of predictors
thus we can compare these models using R2
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MULTIPLE LINEAR REGRESSION

Consider 8 predictors X1, X2,…,X8  and 2 models

Yhat = b0 + b1 X1 + b3 X3 + b6 X6 

Yhat = b0 + b2 X2 + b4 X4 + b5 X5 + b7 X7 + b8 X8 

These models have different number of predictors
We cannot compare these models using R2
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MULTIPLE LINEAR REGRESSION

How to compare models with different 
number of predictors?

• Adjusted R2 (larger is  better)

• AIC   (smaller is better)
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R-squared  vs  adj R-squared - interpretation 

• 100R2    the percentage of variation in Y 
     that is explained by the model 

• Adjusted R2 has no interpretation
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How is Adjusted R-squared 
computed?
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MEAN SQUARES

• MST Total Mean Square

• MSE Mean Square Error

• MSR Regression Mean Square
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Formulas for Mean Squares

=  variance of Y
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Formulas for Mean Squares

=  variance of Y
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.

approximately≈
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.

approximately≈
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.

approximately≈



Cesar Acosta Ph.D.

Analytics

FORMULAS 

≈
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ANOVA Table
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ANOVA Table for SLR

variance of Y

SST = SSE + SSR
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ANOVA Table for SLR

variance of Y

SST = SSE + SSR

1 n – 2   
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Useful measures from the ANOVA TABLE 

       SSE       MSE
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Useful measures from the ANOVA TABLE 

   S = √ MSE = 0.3265   average distance to regression line
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Example – ANOVA TABLE 

     Total    SST =  29.7019

R2 = 1 – (SSE/SST) = 1 – (10.4463/29.7019) = 0.6483

SSE =

SSR =
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Example – ANOVA TABLE 

     Total    99  29.7019  MST = 29.7019 / 99 = 0.30

Adj R2 = 1 – (MSE/MST) = 1 – (0.106595/0.30) = 0.6447
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ANOVA Table for MLR

variance of Y

SST = SSE + SSR
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What is AIC?
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Akaike Information Criteria (AIC)

• Measures the loss of information by fitting a model 
from a sample (and not from the population)

• For MLR the AIC is
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Akaike Information Criteria (AIC)

• Since it measures a loss, we prefer models with 
small AIC

• It makes a balance between SSE and p 
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Akaike Information Criteria (AIC)

Choose the 
model with the 
smallest AIC

predictors p
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MULTIPLE LINEAR REGRESSION

• R2 depends on SSE only, 
• therefore it is useful to compare models with 

the same number p of predictors

• Adj-R2 and AIC depend on SSE and p, 
• therefore they are useful to compare models 

with different number p of predictors
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EXAMPLE
Cars93 dataset
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EXAMPLE 1

• Fit a MLR Model to predict the city mileage, 
MPG.city, of a car using as predictors the car’s 
weight, horsepower, RPM, engine size, number 
of cylinders, and number of passengers

• Predict the city mileage of a 6-passenger car 
with 2800 pounds, 6 cylinders, 150 HP,  6600 
RPM, and 1.9 engine size
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EXAMPLE 1

.

Response
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EXAMPLE 1

.

Why is Cylinders 
not numeric?
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EXAMPLE 1

.

change the 
data type 
to int64
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EXAMPLE 1

.
Response in a Series
Predictors in a DataFrame
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library sklearn
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EXAMPLE 1

.

←  X0.columns
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EXAMPLE 1

.

not clear what coefficient belongs to each predictor
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EXAMPLE 1

.

← create a one-column dataframe
with the regression coefficients

with this DataFrame it is clear what coefficient belongs to each predictor
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EXAMPLE 1

.

the row names identify the predictor
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EXAMPLE 1 - PREDICTION

Predict the city mileage of a car with
• 6 cylinders
• 1.9 Engine Size
• 150 HP
• 6600 RPM
• 6 Passengers
• Weight 2800 pounds 
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EXAMPLE 1 - PREDICTION

Predict the city mileage of a car with
• 6 cylinders
• 1.9 Engine Size
• 150 HP
• 6600 RPM
• 6 Passengers
• Weight 2800 pounds 



Cesar Acosta Ph.D.

Analytics

EXAMPLE 1 - PREDICTION

.
• creating a one-row dataframe 
• with the 1st row of X0
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EXAMPLE 1 - PREDICTION

.
• creating a one-row dataframe 
• with the 1st row of X0

• .copy( )  is needed since this 
• new dataframe is to be modified
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EXAMPLE 1 - PREDICTION

.

predict city mileage

• creating a one-row dataframe 
• with the 1st row of X0

• .copy( )  is needed since this 
• new dataframe is to be modified

• Column of ones not needed with 
sklearn
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library statsmodels.api
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EXAMPLE 1

.

↑  need to insert a column of ones
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EXAMPLE 1 –  statsmodels.api

.

←  .copy( ) since X1 to be modified
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EXAMPLE 1 –  statsmodels.api – build model

.

compare to 
sklearn model1
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EXAMPLE 1 –  statsmodels.api

.

regression equation

if all other variables do not change

if all other variables do not change

Average

Average
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EXAMPLE 1 –  statsmodels.api Prediction

.
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EXAMPLE 1 –  statsmodels.api Prediction

.

predicted with sklearn
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EXAMPLE 1 –  statsmodels.api Prediction, and 90% CI and PI

.
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EXAMPLE 1 –  statsmodels.api Prediction, 90% CI, and PI

.

Confidence Interval  Prediction Interval
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EXAMPLE 1 – y vs yhat

.

y

yh
atpredict city mileage for each car in the dataset

display the scatterplot
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EXAMPLE 1 – y vs yhat

.

y

yh
at

450

predict city mileage for each car in the dataset
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EXAMPLE 1 – y vs yhat

We would have a perfect fit
if all points lie on the 450 line

450
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EXAMPLE 1 – y vs yhat

We would have a perfect fit
if all points lie on the 450 line

For this model, R2 is 0.732

Thus, this set of predictors 
explain 73.2%  of 
MPG variability
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EXAMPLE 1

Questions to be answered

• What are the best predictors?

• How good is the model for prediction?


