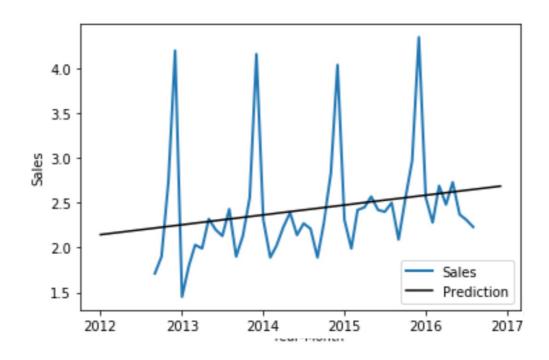
LINEAR REGRESSION WITH CATEGORICAL VARIABLES

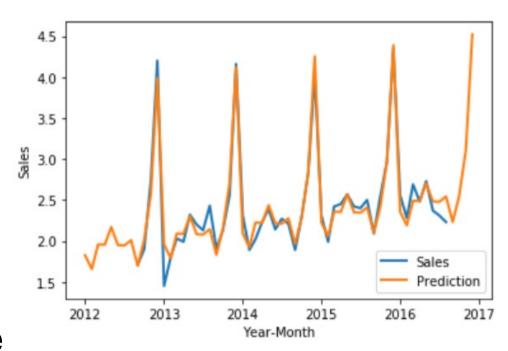
OVERVIEW

o This is linear regression



OVERVIEW

o Is this linear regression?



- Negative Adj R-square
- one-hot encoding with sklearn

- Y₁, Y₂, ..., Y_n are random vars.
- independent (independence)
- normal (normality)
- with same variance (constant variance)
- Model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

- Y₁, Y₂, ..., Y_n are random vars.
- independent (independence)
- normal (normality)
- with same variance (constant variance)
- Model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

random variables

- Y₁, Y₂, ..., Y_n are random vars.
- independent (independence)
- normal (normality)
- with same variance (constant variance)
- Model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

not random

- Y₁, Y₂, ..., Y_n are random vars.
- independent (independence)
- normal (normality)
- with same variance (constant variance)

$$\text{Regression} \quad \begin{cases} Y &= \beta_0 + \beta_1 \, X_1 \, + \dots + \beta_p \, X_p + \epsilon \qquad \epsilon \sim N(0, \sigma^2) \\ E[Y] &= \beta_0 + \beta_1 \, X_1 \, + \dots + \beta_p \, X_p \\ \hat{Y} &= b_0 + b_1 \, X_1 \, + \dots + b_p \, X_p \end{cases}$$

OVERVIEW

- Regression models review
- Regression with a Categorical predictor (with 2 or 3 categories)
- Interaction between predictors
- Examples
 - Encoding methods
 - Forecasting with categorical variables
 - Regression with many categorical variables

EXAMPLES

Regression with a Categorical Variable with 2 categories

EXAMPLES

Introductory Example 1

	X1	X2	Υ
0	S	-0.10	19.19
1	s	2.53	22.74
2	s	4.86	23.91
3	М	0.26	7.07
4	М	2.55	7.93
5	М	4.87	8.93
6	L	0.08	20.63
7	L	2.62	23.46
8	L	5.09	25.75

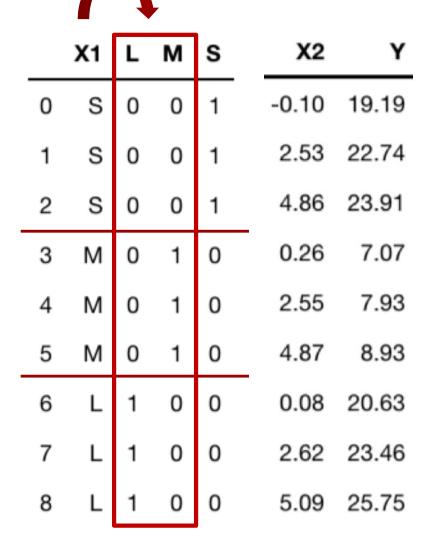
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

How do we incorporate X_1 in the model?

- X₁ to be replaced by binary variables
- The number p of predictors will change

	X1	L	М	s		X2	Υ
0	s	0	0	1		-0.10	19.19
1	s	0	0	1		2.53	22.74
2	s	0	0	1		4.86	23.91
3	М	0	1	0		0.26	7.07
4	М	0	1	0		2.55	7.93
5	М	0	1	0		4.87	8.93
6	Г	1	0	0		0.08	20.63
7	L	1	0	0		2.62	23.46
8	L	1	0	0		5.09	25.75
					-		

- Binary variable S is not needed
- When M = 0, L = 0, X_1 must be S



- Binary variable S is not needed
- When M = 0, L = 0, X_1 must be S
- The number of binary variables is equal to the number of categories minus 1

	X1	L	М		X2	Y
0	s	0	0	,	-0.10	19.19
1	S	0	0		2.53	22.74
2	S	0	0		4.86	23.91
3	М	0	1		0.26	7.07
4	М	0	1		2.55	7.93
5	М	0	1		4.87	8.93
6	L	1	0		0.08	20.63
7	L	1	0		2.62	23.46
8	L	1	0		5.09	25.75

Cesar Acosta Ph.D.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon \longrightarrow Y = \beta_0 + \beta_M M + \beta_L L + \beta_2 X_2 + \epsilon$$

	X1	X2	Υ	_	1	L	М	X2	
0	S	-0.10	19.19	_	0	0	0	-0.10	
1	S	2.53	22.74		1	0	0	2.53	
2	S	4.86	23.91		2	0	0	4.86	
3	М	0.26	7.07		3	0	1	0.26	
4	М	2.55	7.93	•	4	0	1	2.55	
5	М	4.87	8.93		5	0	1	4.87	
6	L	0.08	20.63		6	1	0	0.08	
7	L	2.62	23.46		7	1	0	2.62	
8	L	5.09	25.75		8	1	0	5.09	
	р	= 2					p =	= 3	

Transform this model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

into

this new model

$$Y = \beta_0 + \beta_M M + \beta_L L + \beta_2 X_2 + \epsilon$$

$$M = \begin{cases} 1 & \text{if } X_1 = M \\ 0 & \text{ow} \end{cases}$$

$$L = \begin{cases} 1 & \text{if } X_1 = L \\ 0 & \text{ow} \end{cases}$$

Transform this model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

into

this new model

substituting X_1 with binary variables M and L

$$Y = \beta_0 + \beta_M M + \beta_L L + \beta_2 X_2 + \epsilon$$

$$M = \begin{cases} 1 & \text{if } X_1 = M \\ 0 & \text{ow} \end{cases}$$

$$L = \begin{cases} 1 & \text{if } X_1 = L \\ 0 & \text{ow} \end{cases}$$

EXAMPLES

Introductory Example 2

Predict the Price of a car using MPG.city and Origin

ca	categori	numerical	Y
	Origin	MPG_city	Price
	USA	31	9.0
	USA	23	11.1
	USA	22	15.7
	non-USA	17	19.7
	non-USA	21	22.7
	USA	29	9.2

Υ	X_2	X_1
Price	MPG_city	Origin
9.0	31	USA
11.1	23	USA
15.7	22	USA
19.7	17	non-USA
22.7	21	non-USA
9.2	29	USA

Origin with two categories

- USA cars
- non-USA cars

We will find an OLS line for each category in just one model

Notation

Y: Price of the car

X₁: Origin (USA car, non-USA car)

X₂: City Mileage (MPG.city)

replace X₁ with a binary variable

$$x_{\scriptscriptstyle 1} = \begin{cases} 0 & \text{if USA car} \\ 1 & \text{if non-USA car} \end{cases}$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

$$x_{\scriptscriptstyle 1} = \left\{ \begin{array}{ll} 0 & \text{if USA car} \\ 1 & \text{if non-USA car} \end{array} \right.$$

becomes two models

Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

$$x_{\scriptscriptstyle 1} = \left\{ \begin{array}{ll} 0 & \text{if USA car} \\ 1 & \text{if non-USA car} \end{array} \right.$$

becomes two models

$$Y = \beta_0 + \beta_2 X_2 + \epsilon \qquad (x_1 = 0)$$

$$Y = (\beta_0 + \beta_1) + \beta_2 X_2 + \epsilon \qquad (x_1 = 1)$$

Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

$$x_{\scriptscriptstyle 1} = \left\{ \begin{array}{ll} 0 & \text{if USA car} \\ 1 & \text{if non-USA car} \end{array} \right.$$

resulting in two OLS lines

• For US cars
$$\hat{Y} = b_0 + b_2 X_2$$

$$(x_1 = 0)$$

$$\cdot$$
 For non-US cars $\hat{Y}=(b_0+b_1)+b_2\,X_2$

$$(x_1 = 1)$$

Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

$$x_{\scriptscriptstyle 1} = \left\{ \begin{array}{ll} 0 & \text{if USA car} \\ 1 & \text{if non-USA car} \end{array} \right.$$

resulting in two OLS lines

$$\hat{Y} = b_0 + b_2 X_2$$
 $(x_1 = 0)$
 $\hat{Y} = (b_0 + b_1) + b_2 X_2$ $(x_1 = 1)$

additional intercept ↑

↑ slope

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
df = pd.read_csv('Cars93.csv')
# statsmodels.formula.api does not work with dots in Column names
# thus, replace dots from Column names with ' '
df.columns=df.columns.str.replace('.','_', regex = True)
df.columns
'RPM', 'Rev per mile', 'Man trans avail', 'Fuel tank capacity', 'Passengers',
      'Length', 'Wheelbase', 'Width', 'Turn circle', 'Rear seat room', 'Luggage room',
      'Weight', 'Origin', 'Make'],
```

Fit Model

Fit Model

$$\hat{Y} = 42.55 - 1.144 X_2$$

Model for US cars

Fit Model

Intercept 42.555991
$$C(Origin)[T.non-USA]$$
 5.264041 \leftarrow Additional intercept $\rightarrow 1.144322 \leftarrow slope$

$$\hat{Y} = 42.55 - 1.144 X_2$$

$$\hat{Y} = (42.55 + 5.264) - 1.144 X_2$$

Model for non-US cars

additional intercept

EXAMPLE 2

How much more expensive are non-US cars?

PIVOT TABLE

How much more expensive are non-US cars?

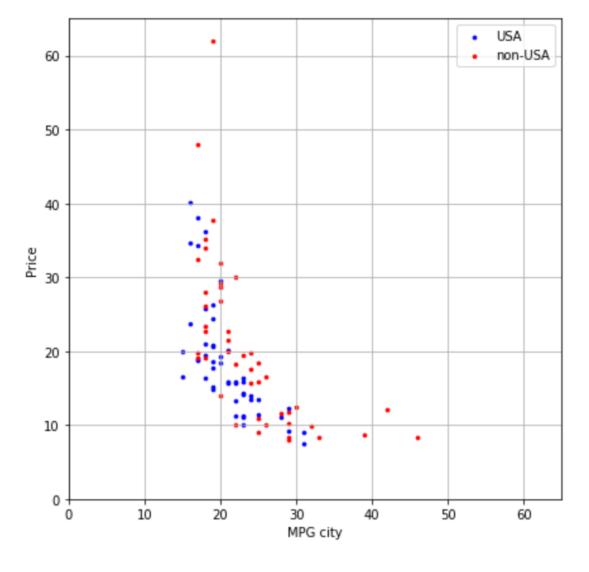
```
df.pivot_table(values = 'Price',index = 'Origin')

Price
Origin

USA 18.572917
non-USA 20.508889
```

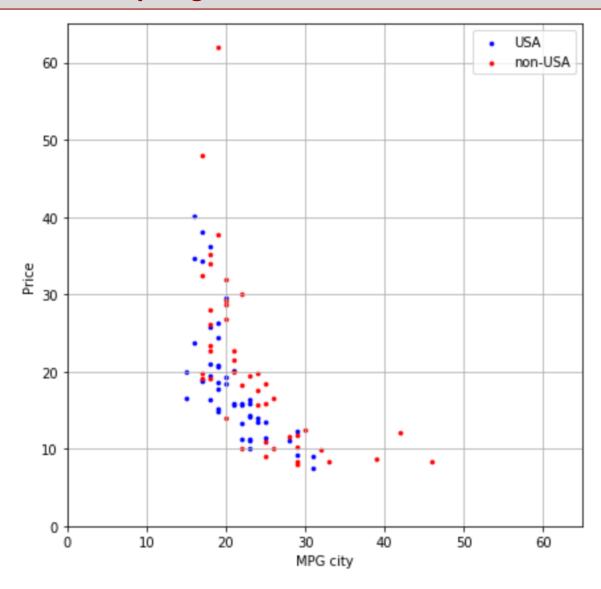
non-USA cars are on average \$1,936 more expensive

SCATTERPLOT with data points classified by Origin



SCATTERPLOT with data points classified by Origin

non-USA cars are on average more expensive



PIVOT TABLE and SCATTERPLOT

non-USA cars are on average more expensive

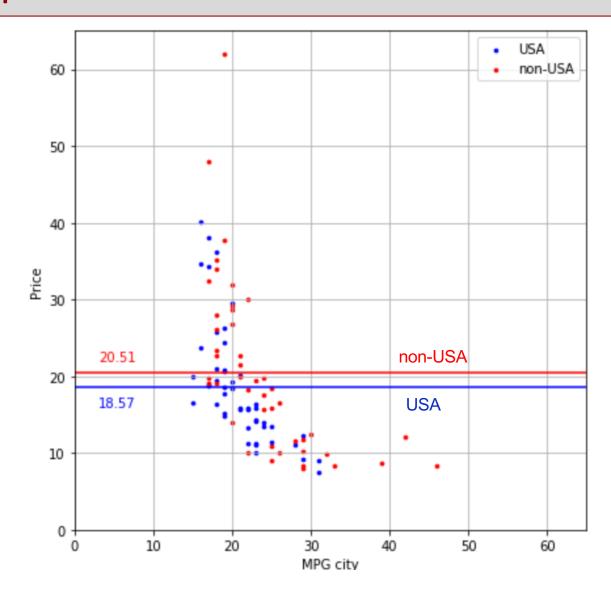
Average Price

Origin

USA 18.572917

non-USA 20.508889

difference 1.936



SCATTERPLOT with data points classified by Origin

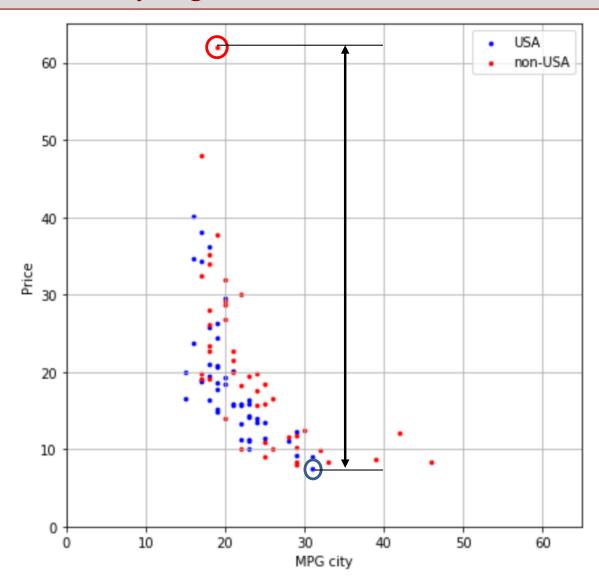
Average Price

Origin

USA 18.572917

non-USA 20.508889

difference 1.936



SCATTERPLOT with data points classified by Origin

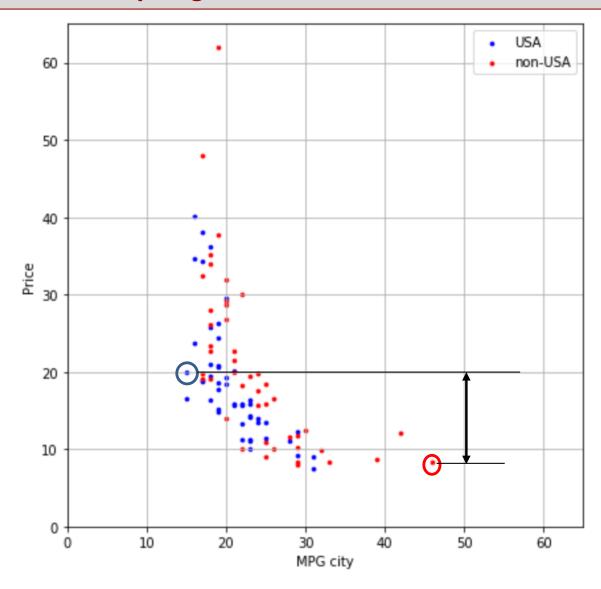
Average Price

Origin

USA 18.572917

non-USA 20.508889

difference 1.936



REGRESSION MODEL

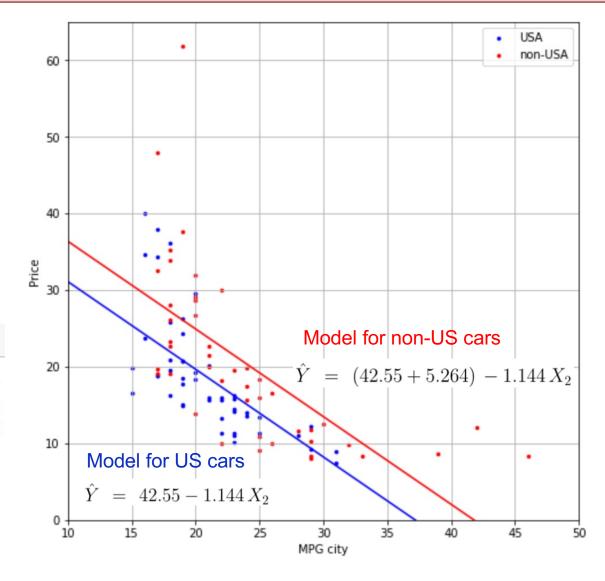
```
# USA cars fitted line
def f0(x):
    return m1.params[0] + x*m1.params[2]
# non-USA cars fitted line
def f1(x):
    return m1.params[0] + m1.params[1]+\
                              x*m1.params[2]
x = np.linspace(0,50,100)
y0 = [f0(i) \text{ for } i \text{ in } x]
y1 = [f1(i) \text{ for } i \text{ in } x]
plt.scatter(df_USA.MPG_city,df_USA.Price,
             c='b', s=7, label = 'USA')
plt.scatter(df_nonUSA.MPG_city,df_nonUSA.Price,
             c='r',s=7,label='non-USA')
# USA cars line
plt.plot(x,y0,c='b')
# non-USA cars line
plt.plot(x,y1,c='r')
```



REGRESSION MODEL

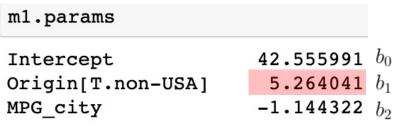
m1.params

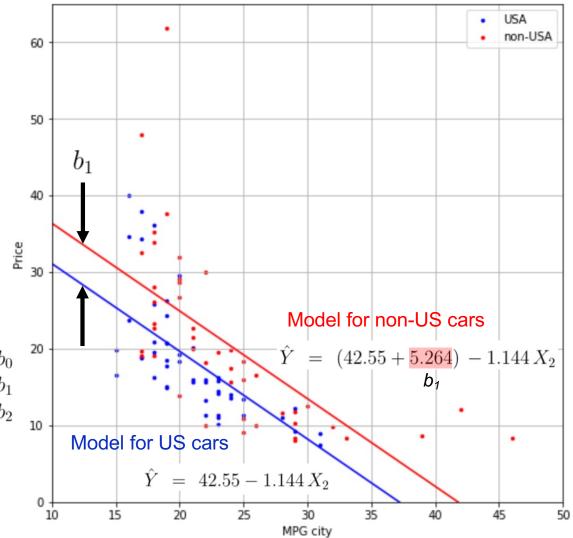
Intercept 42.555991
Origin[T.non-USA] 5.264041
MPG_city -1.144322



REGRESSION MODEL

 b_1 is the difference in the average price between USA and non-USA cars (if X_2 is the same)

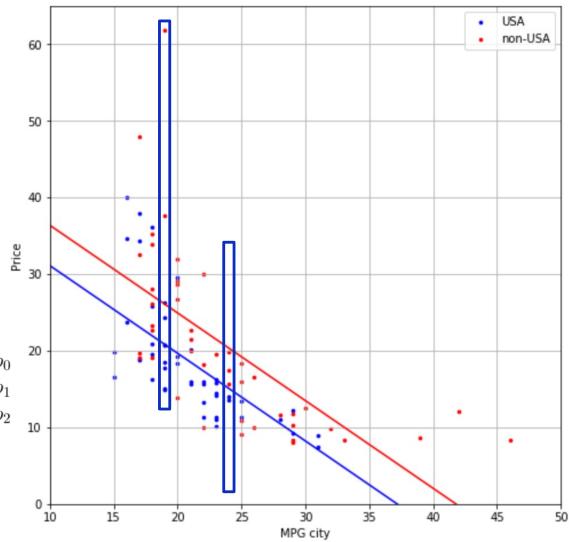




non-USA cars are on average \$5,264 more expensive when comparing cars with the same mileage

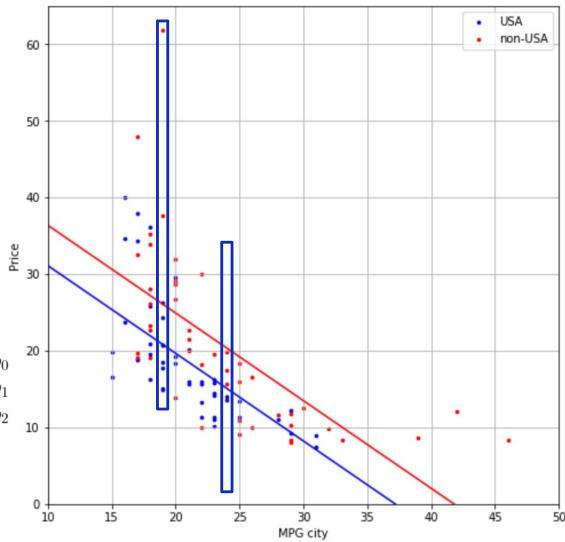


Intercept 42.555991 b_0 Origin[T.non-USA] 5.264041 b_1 MPG city -1.144322 b_2



non-USA cars are on average \$5,264 more expensive when the effect of the other variable is removed

Intercept 42.555991 b_0 Origin[T.non-USA] 5.264041 b_1 MPG city -1.144322 b_2

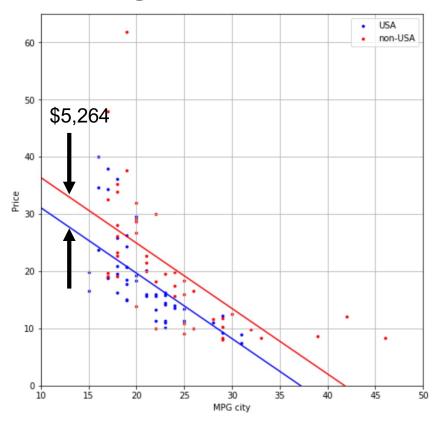


How much more expensive are non-USA cars?

Pivot Table

USA non-USA \$1,936 20.51 18.57 10 10 20 50 MPG city

Regression model



How much more expensive are non-USA cars?

- How much more expensive are non-USA cars than USA cars, irrespective of the mileage?
 - non-US cars are on average \$1,936 more expensive

How much more expensive are non-USA cars?

- How much more expensive are non-USA cars than USA cars, irrespective of the mileage?
 non-US cars are on average \$1,936 more expensive
- How much more expensive are non-USA cars than USA cars, having the same mileage?
 - Comparing cars with the same mileage, non-US cars are on average \$5,264 more expensive

Comparing cars with the same mileage X_2 , non-US cars are on average \$5,264 more expensive

$$\hat{Y} = 42.55 - 1.144 X_2$$

Model for US cars

$$\hat{Y} = (42.55 + 5.264) - 1.144 X_2$$

Model for non-US cars

Price difference if both models use the same X₂

EXAMPLES

Regression with a Categorical Variable with 3 categories

Predict the Price of a car using MPG.city and AirBags

categorical	numerical	Υ
AirBags	MPG_city	Price
No	19	14.9
Driver only	19	20.7
No	29	10.3
Driver & Passenger	20	19.3
Driver only	19	26.3
Driver & Passenger	19	15.1

Price	MPG_city	AirBags
14.9	19	No
20.7	19	Driver only
10.3	29	No
19.3	20	Driver & Passenger
26.3	19	Driver only
15.1	19	Driver & Passenger

AirBags categories

- No airbags
- Driver only
- Driver and Passenger

Price	MPG_city	AirBags
14.9	19	No
20.7	19	Driver only
10.3	29	No
19.3	20	Driver & Passenger
26.3	19	Driver only
15.1	19	Driver & Passenger

AirBags populations

- No airbags
- Driver only
- Driver and Passenger

Find an OLS line for each population

AirBags	MPG_city	Price
No	19	14.9
Driver only	19	20.7
No	29	10.3
Driver & Passenger	20	19.3
Driver only	19	26.3
Driver & Passenger	19	15.1

How do we incorporate AirBags into the model?

	X_1	X_2	
Use binary variab	AirBags	MPG_city	Price
Use billary variab	No	19	14.9
 No airbags 	Driver only	19	20.7
D :	No	29	10.3
Driver only	Driver & Passenger	20	19.3
 Driver and Pa 	Driver only	19	26.3
	Driver & Passenger	19	15.1

bles

 X_{11}

X₁₂ assenger

REGRESSION WITH A CATEGORICAL VARIABLE (3 CATEGORIES)

Y: Price of the car

 X_2 : MPG.city

X₁: AirBags

3 categories numerical

Transform this model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

into

this new model

$$Y = \beta_0 + \beta_{11} X_{11} + \beta_{12} X_{12} + \beta_2 X_2 + \epsilon$$

REGRESSION WITH A CATEGORICAL VARIABLE (3 CATEGORIES)

Y: Price of the car

 X_2 : MPG.city

X₁: AirBags

3 categories numerical

Transform this model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

into

this new model

$$Y = \beta_0 + \beta_{11} X_{11} + \beta_{12} X_{12} + \beta_2 X_2 + \epsilon$$

Transform this model
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

into this new model

$$Y = \beta_0 + \beta_{11} X_{11} + \beta_{12} X_{12} + \beta_2 X_2 + \epsilon$$

$$x_{_{11}} = \begin{cases} 1 & \text{if car has driver only airbag} \\ 0 & \text{ow} \end{cases}$$

$$x_{12} = \begin{cases} 1 & \text{if car has driver and passenger airbags} \\ 0 & \text{ow} \end{cases}$$

New Model
$$Y = \beta_0 + \beta_{11} X_{11} + \beta_{12} X_{12} + \beta_2 X_2 + \epsilon$$

$$x_{\scriptscriptstyle 11} = \left\{ \begin{array}{ll} 1 & \text{ if car has driver only airbag} \\ 0 & \text{ ow} \end{array} \right.$$

$$x_{12} = \begin{cases} 1 & \text{if car has driver and passenger airbags} \\ 0 & \text{ow} \end{cases}$$

Becomes three models

$$Y = \beta_0 + \beta_2 X_2 + \epsilon$$

$$(x_{11} = x_{12} = 0)$$

$$Y = (\beta_0 + \beta_{11}) + \beta_2 X_2 + \epsilon \qquad (x_{11} = 1, x_{12} = 0)$$

$$(x_{11} = 1, x_{12} = 0)$$

$$Y = (\beta_0 + \beta_{12}) + \beta_2 X_2 + \epsilon \qquad (x_{11} = 0, x_{12} = 1)$$

is defined when all binary variables are set equal to 0

Model
$$Y = \beta_0 + \beta_{11} X_{11} + \beta_{12} X_{12} + \beta_2 X_2 + \epsilon$$

$$x_{\scriptscriptstyle 11} = \left\{ \begin{array}{ll} 1 & \text{if car has driver only airbag} \\ 0 & \text{ow} \end{array} \right.$$

$$x_{\scriptscriptstyle 12} = \left\{ \begin{array}{ll} 1 & \text{ if car has driver and passenger airbags} \\ 0 & \text{ ow} \end{array} \right.$$

Three OLS lines

Model for cars with

• No AirBags
$$\hat{Y} = b_0 + b_2 X_2$$

$$(x_{11} = x_{12} = 0)$$

base category is "no airbag"

• Driver Only airbags
$$\hat{Y} = (b_0 + b_{11}) + b_2 X_2$$
 $(x_{11} = 1, x_{12} = 0)$

$$\hat{Y} = (b_0 + b_{11}) + b_2 X_2$$

$$(x_{11} = 1, x_{12} = 0)$$

• Driver & Passenger
$$\hat{Y}=(b_0+b_{12})+b_2\,X_2$$

$$(x_{11} = 0, x_{12} = 1)$$

Price	MPG_city	AirBags
14.9	19	No
20.7	19	Driver only
10.3	29	No
19.3	20	Driver & Passenger
26.3	19	Driver only
15.1	19	Driver & Passenger

category *labels*

- No
- Driver only
- Driver & Passenger

```
select "car with No airbag" as base category
```

REGRESSION WITH A CATEGORICAL VARIABLE – PARAMETERS

REGRESSION WITH A CATEGORICAL VARIABLE – 3 Models

$$\hat{Y} = 32.53 - 0.786 X_2$$

No Airbag

$$\hat{Y} = 32.53 - 0.786 X_2$$

$$\hat{Y} = (32.53 + 5.69) - 0.786 X_2$$

Driver only

$$\hat{Y} = 32.53 - 0.786 X_2$$

No Airbag

$$\hat{Y} = (32.53 + 5.69) - 0.786 X_2$$

Driver only

$$\hat{Y} = (32.53 + 11.21) - 0.786 X_2$$

Driver & Passenger

EXAMPLE 2

How much more expensive are cars with airbags?

REGRESSION WITH A CATEGORICAL VARIABLE – PIVOT TABLE

cars with airbags are on average more expensive

```
df.pivot_table(values = 'Price',index = 'AirBags')
```

Price

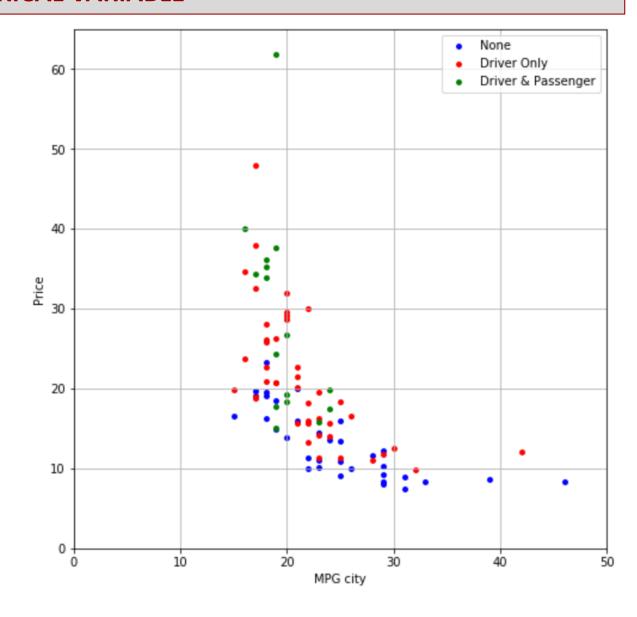
AirBags

Driver & Passenger 28.368750

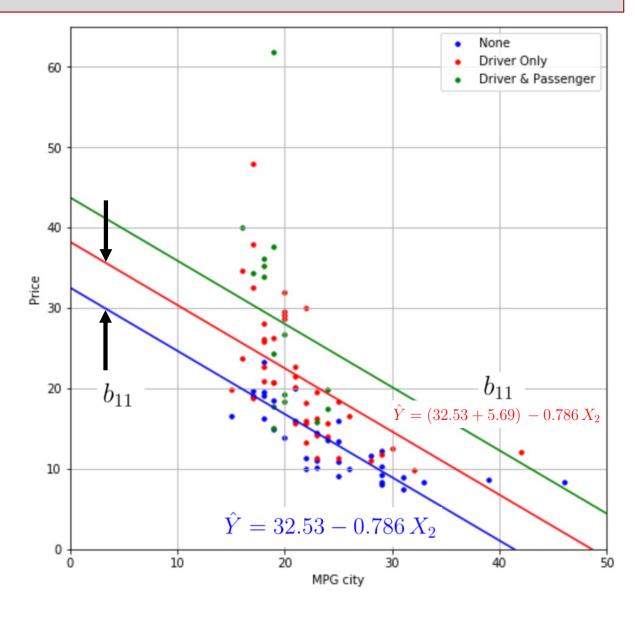
Driver only 21.223256

None 13.173529

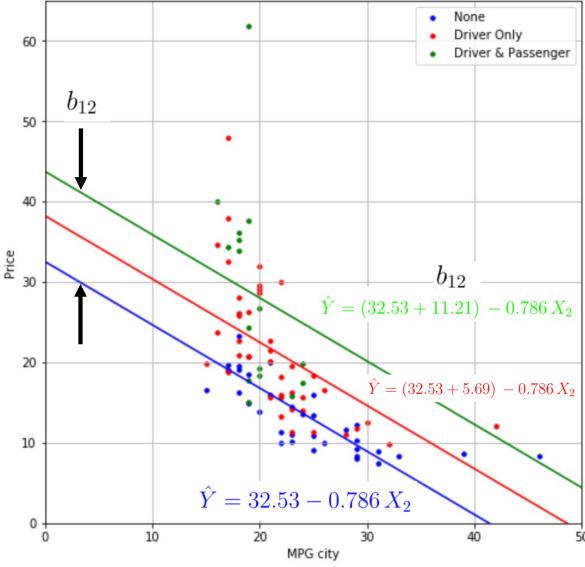
cars with airbags are on average more expensive



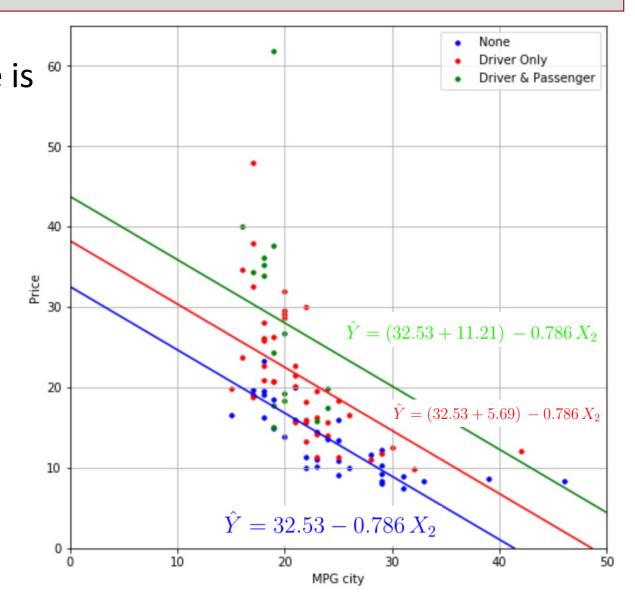
b₁₁ is the difference in the average price between cars with No Airbags (base) and cars with Driver Only airbag



 b_{12} is the difference in the average price between cars with No Airbags (base) and cars with **Driver and Passenger** airbags



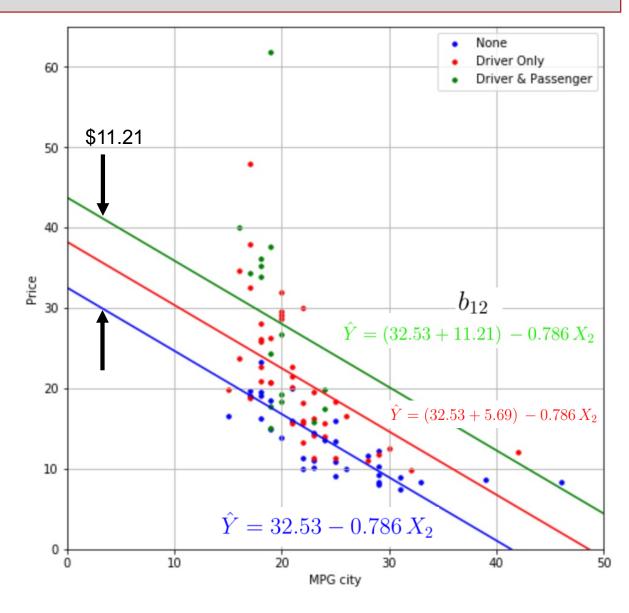
How much expensive is a car with Driver and Passenger airbags than a car with No Airbags (base)?



How much expensive is a car with Driver and Passenger airbags than a car with No Airbags (base)?

On average, it is \$11,210 dollars more expensive,

if the cars have same Mileage



How much expensive is a car with Driver and Passenger airbags than a car with No Airbags (base)?

On average, it is \$15,190 dollars more expensive, irrespective of the cars Mileage

Price

AirBags

Driver & Passenger	28.368750
Driver only	21.223256
None	13.173529

15.195221

Regression with **interaction** between predictors

- What is a predictor's effect on Y?
- What is interaction?

OVERVIEW

- The effect of predictor X₁ on Y is the average amount Y changes when X₁ increases by one unit
- The effect of predictor X₁ on Y is estimated by the regression coefficient of X₁ in the regression model

OVERVIEW

- The effect of predictor X₁ on Y is the average amount Y changes when X₁ increases by one unit
- The effect of predictor X₁ on Y is estimated by the regression coefficient of X₁ in the regression model
- Interaction occurs when the effect of a predictor X₂ on Y depends on the value or category of another predictor X₁
- \circ The interaction of X_1 and X_2 is estimated by the regression coefficient of the term X_1X_2 in the model

EFFECTS OF X ON Y – NO INTERACTION

 The effect of one predictor on the response Y is given by the slope **OLS Regression Results**

	Dep. Variable:		e:	MPG.city		R-squ	uared:	0.732
	Model:		ıl:	O	LS A	dj. R-squ	uared:	0.713
	Method:		d: Lea	ast Squar	es	F-sta	tistic:	38.61
		Date:		Fri, 18 Sep 2020 Pr		b (F-stat	tistic):	2.79e-22
		Time	e:	18:57:	08 L	og-Likeli	hood:	-228.40
	No. Ob	servations	s:	ģ	92		AIC:	470.8
	Df	Residuals	s:		85		BIC:	488.4
	Df Model:		l:		6			
	Covariance Type:		e:	nonrobu	ıst			
		coef	std err	t	P> t	[0.025	0.975]	
	const	36.9200	7.294	5.062	0.000	22.417	51.423	
	x1	0.1015	0.570	0.178	0.859	-1.031	1.234	
	x2	0.8743	1.076	0.813	0.419	-1.264	3.013	
	х3	-0.0303	0.023	-1.344	0.183	-0.075	0.015	
slopes	x4	0.0016	0.001	1.418	0.160	-0.001	0.004	
	x5	-0.2385	0.540	-0.441	0.660	-1.313	0.836	
	х6	-0.0066	0.002	-4.006	0.000	-0.010	-0.003	

EFFECT OF X₁ ON Y - NO INTERACTION

- The effect of X₁ on the response Y is given by the slope of X₁
- If X₁ increases by one unit then Y increases by 0.1015, on average
- all other variables held constant

effect of X₁ on Y

OLS Regression Results

Do	n Variabl		MPC	i+.	D cou	ıaradı	0.732
De	p. Variabl	e.	MPG.c	aty	n-sq	uared:	0.732
	Mode	el:	O	LS A	dj. R-squ	uared:	0.713
	Metho	d: Lea	ast Squar	es	F-sta	tistic:	38.61
	Date	e: Fri, 1	8 Sep 20	20 Pr	ob (F-stat	tistic):	2.79e-22
	Time	e:	18:57:	08 L	og-Likeli	hood:	-228.40
No. Ob	servation	s:		92		AIC:	470.8
Di	Residual	s:		85		BIC:	488.4
Df Model:				6			
Covar	iance Typ	e:	nonrobu	ıst			
			-				
	coef	std err	t	P> t	[0.025	0.975	l.
const	36.9200	7.294	5.062	0.000	22.417	51.423	}
x1	0.1015	0.570	0.178	0.859	-1.031	1.234	į.
x2	0.8743	1.076	0.813	0.419	-1.264	3.013	3
хЗ	-0.0303	0.023	-1.344	0.183	-0.075	0.015	i
x4	0.0016	0.001	1.418	0.160	-0.001	0.004	ŀ
x5	-0.2385	0.540	-0.441	0.660	-1.313	0.836	

0.002 -4.006 0.000 -0.010 -0.003

EFFECT OF X₅ ON Y – NO INTERACTION

- The effect of X₅ on the response Y is given by the slope of X₅
- If X₅ increases by one unit then Y decreases by 0.2385, on average
- all other variables held constant

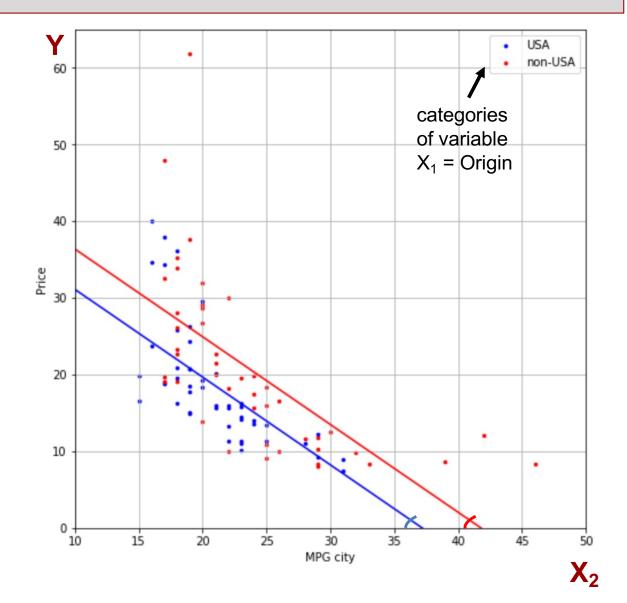
OLS Regression Results

De	p. Variabl	e:	MPG.c	ity	R-sq	uared:	0.732
	Mode	el:	O	LS A	dj. R-sq	uared:	0.713
	Metho	d: Lea	st Squar	es	F-sta	tistic:	38.61
	Date	e: Fri, 1	8 Sep 20	20 Pro	ob (F-sta	tistic):	2.79e-22
	Time	e:	18:57:	08 L	og-Likeli	ihood:	-228.40
No. Ob	servation	s:		92		AIC:	470.8
Di	Residual	s:		85		BIC:	488.4
	Df Mode	el:		6			
Covar	iance Typ	e:	nonrobu	ıst			
		-4-1		D. M	FO 00F	0.075	
	coef	std err	t	P> t	[0.025	0.975]	
const	36.9200	7.294	5.062	0.000	22.417	51.423	
x1	0.1015	0.570	0.178	0.859	-1.031	1.234	
x2	0.8743	1.076	0.813	0.419	-1.264	3.013	
х3	-0.0303	0.023	-1.344	0.183	-0.075	0.015	
x4	0.0016	0.001	1.418	0.160	-0.001	0.004	
х5	-0.2385	0.540	-0.441	0.660	-1.313	0.836	
х6	-0.0066	0.002	-4.006	0.000	-0.010	-0.003	

effect of X₅ on Y

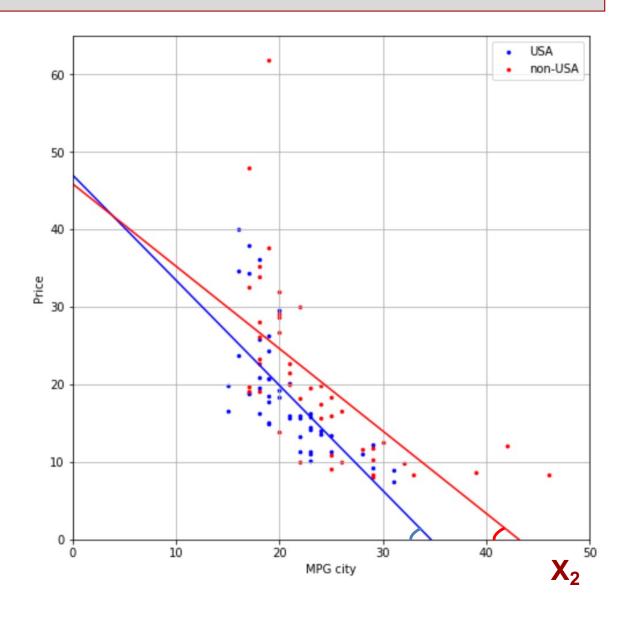
NO INTERACTION MODEL

- Y = Price decreases
 with X₂ = MPG.city
- The effect of
 X₂ = MPG.city on
 Y = Price, is given by
 the coeff. of X₂ (slope)
- The slope is the same for all categories of X₁ = Origin
- No interaction between
 X₁ = Origin with
 X₂ = MPG.city



MODEL WITH INTERACTION

- Price decreases with MPG.city
- Different categories of Origin result in different slopes
- Price decreases faster on non-US cars
- The effect of predictor MPG.city on Price depends on the category of Origin



Model with

interaction

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \epsilon$$

$$x_{\scriptscriptstyle 1} = \begin{cases} 0 & \text{if USA car} \\ 1 & \text{if non-USA car} \end{cases}$$

$$X_1 = Origin$$

$$X_2$$
 = MPG.city

interaction term

Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \epsilon$$

with

$$x_{\scriptscriptstyle 1} = \left\{ \begin{array}{ll} 0 & \text{if USA car} \\ 1 & \text{if non-USA car} \end{array} \right.$$

$$X_1 = Origin$$

$$X_2 = MPG.city$$

Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \epsilon$$

$$x_{_{1}} = \begin{cases} 0 & \text{if USA car} \\ 1 & \text{if non-USA car} \end{cases}$$

Two OLS lines

$$\hat{Y} = b_0 + b_2 X_2$$

$$(x_1 = 0)$$

 $(x_1 = 0)$ base model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \epsilon$$

$$x_{\scriptscriptstyle 1} = \left\{ \begin{array}{ll} 0 & \text{if USA car} \\ 1 & \text{if non-USA car} \end{array} \right.$$

Two OLS lines

$$\hat{Y}=b_0+b_2\,X_2$$
 $\qquad \qquad (x_1=0)$ \leftarrow model for US cars
$$\hat{Y}=(b_0+b_1)\,+\,(b_2+b_{12})\,X_2 \qquad \qquad (x_1=1) \qquad \leftarrow$$
 model for non-US cars

additional intercept

additional slope

MODEL WITH NO INTERACTION

Fit Model

Two OLS lines

$$\hat{Y} = 42.55 - 1.144 \, X_2 \qquad \qquad \leftarrow \bmodel \ \text{for} \\ \hat{Y} = \left(42.55 + 5.264\right) - 1.144 \, X_2 \qquad \qquad \leftarrow \bmodel \ \text{for} \\ & \qquad \qquad \uparrow \qquad \qquad \qquad$$
 additional intercept

MODEL WITH INTERACTION

Fit Model

Two OLS lines

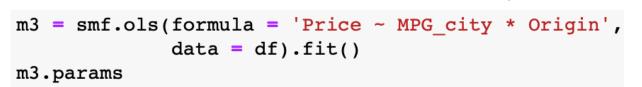
$$\hat{Y} = 47.01 - 1.357 X_2$$

$$(x_1 = 0)$$

$$\hat{Y} = (47.01 - 1.1329) + (-1.357 + 0.2939) X_2 \qquad (x_1 = 1)$$

MODEL WITH INTERACTION

Fit Model



Intercept 47.011062 b_0 Origin[T.non-USA] -1.132917 b_1 additional intercept MPG_city -1.356890 b_2 $MPG_city:Origin[T.non-USA] 0.293932 <math>b_{12}$ additional slope

Two OLS lines

• For US cars
$$\hat{Y} = 47.01 - 1.357 X_2$$
 $(x_1 = 0)$

• For non-US cars $\hat{Y} = (47.01 - 1.1329) + (-1.357 + 0.2939) X_2$ $(x_1 = 1)$

additional intercept

additional slope

Fit Model

Two OLS lines

$$\hat{Y} = 47.01 - 1.357 X_2$$

$$(x_1 = 0)$$

$$\hat{Y} = (47.01 - 1.1329) + (-1.357 + 0.2939) X_2 \qquad (x_1 = 1)$$

Fit Model

```
m3 = smf.ols(formula = 'Price ~ MPG city * Origin',
             data = df).fit()
m3.params
Intercept
                              47.011062
Origin[T.non-USA]
                              -1.132917
                                                    non-base
MPG city
                              -1.356890
                                                    model
MPG city:Origin[T.non-USA]
                               0.293932
```

Two OLS lines

$$\hat{Y} = 47.01 - 1.357 X_2$$

$$(x_1 = 0)$$

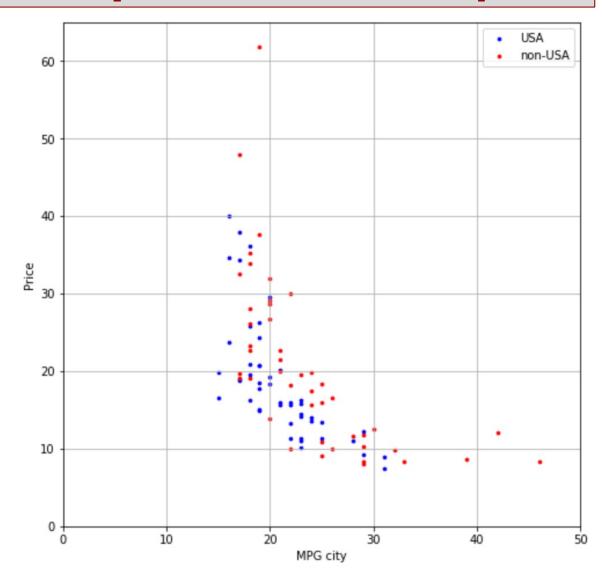
For non-US cars

$$\hat{Y} = (47.01 - 1.1329) + (-1.357 + 0.2939) X_2 \qquad (x_1 = 1)$$

additional intercept

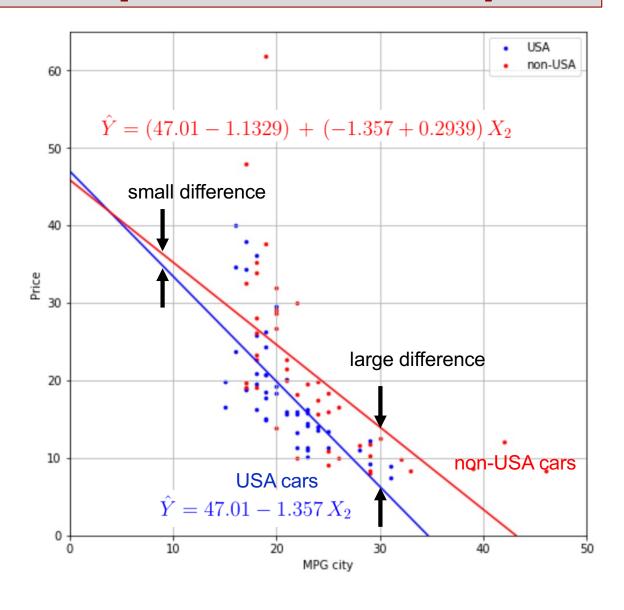
additional slope

non-USA cars are on average more expensive



INTERACTION BETWEEN NUMERIC VARIABLE X2 AND A CATEGORICAL VARIABLE X1

The difference in the average price (between USA and non-USA cars) changes as mileage increases



Encoding Methods Example 1

n = 9

p = 2

Categorical Predictors – EXAMPLE

Consider the following dataset

<i>X</i> ₁	X_2	Υ
S	-0.10	19.19
S	2.53	22.74
S	4.86	23.91
M	0.26	7.07
M	2.55	7.93
M	4.87	8.93
L	0.08	20.63
L	2.62	23.46
L	5.09	25.75

	X1	X2	Y
0	s	-0.10	19.19
1	s	2.53	22.74
2	s	4.86	23.91
3	М	0.26	7.07
4	М	2.55	7.93
5	М	4.87	8.93
6	L	80.0	20.63
7	L	2.62	23.46
8	L	5.09	25.75

Categorical Predictors – EXAMPLE

Consider the following dataset

<i>X</i> ₁	<i>X</i> ₂	Υ
S	-0.10	19.19
S	2.53	22.74
S	4.86	23.91
M	0.26	7.07
M	2.55	7.93
M	4.87	8.93
L	0.08	20.63
L	2.62	23.46
L	5.09	25.75

<i>X</i> ₁	<i>X</i> ₂	Y
0	-0.10	19.19
0	2.53	22.74
0	4.86	23.91
1	0.26	7.07
1	2.55	7.93
1	4.87	8.93
2	0.08	20.63
2	2.62	23.46
2	5.09	25.75

label encoding

Categorical Predictors – LABEL ENCODING

	X1	X2	Y
0	0	-0.10	19.19
1	0	2.53	22.74
2	0	4.86	23.91
3	1	0.26	7.07
4	1	2.55	7.93
5	1	4.87	8.93
6	2	0.08	20.63
7	2	2.62	23.46
8	2	5.09	25.75

# Split respons	se, predictors
<pre>X, y = data1[[' X</pre>	X1','X2']], data1.Y

	X1	X2
0	0	-0.10
1	0	2.53
2	0	4.86
3	1	0.26
4	1	2.55
5	1	4.87
6	2	0.08
7	2	2.62
8	2	5.09

У	
0	19.19
1	22.74
2	23.91
3	7.07
4	7.93
5	8.93
6	20.63
7	23.46
8	25.75

Get the Regression Model and the results

```
m1 = LinearRegression().fit(X,y)

m1.intercept__

15.167783009625168

m1.coef__
array([0.60192355, 0.77691744])

# Least Squares plane

# Yhat = 15.167 + 0.602 X1 + 0.777 X2
```

Get the Regression Model and the results

```
m1 = LinearRegression().fit(X,y)

m1.intercept__

15.167783009625168

m1.coef__
array([0.60192355, 0.77691744])

# Least Squares plane

# Yhat = 15.167 + 0.602 X1 + 0.777 X2
```

```
# R-squared
R2 = m1.score(X,y)
R2
                              very small
0.052592593041448255
# number of rows, number of predictors
n, p = 9, 2
# adj R-squared
print (1 - (1-R2)*(n-1)/(n-p-1))
-0.26320987594473566
                              negative!
```

Library statsmodels

data1

2	X1	X2	Y
0	0	-0.10	19.19
1	0	2.53	22.74
2	0	4.86	23.91
3	1	0.26	7.07
4	1	2.55	7.93
5	1	4.87	8.93
6	2	0.08	20.63
7	2	2.62	23.46
8	2	5.09	25.75

import statsmodels.formula.api as smf

```
m11 = smf.ols('Y ~ X1 + X2',data=data1).fit()
m11.summary()
```

OLS Regression Results

Dep. Variable:	Υ	R-squared:	0.053
Model:	OLS	Adj. R-squared:	-0.263
Method:	Least Squares	F-statistic:	0.1665

	coef	std err	t	P> t	[0.025	0.975]
Intercept	15.1678	5.682	2.670	0.037	1.265	29.070
X1	0.6019	3.474	0.173	0.868	-7.899	9.103
X2	0.7769	1.428	0.544	0.606	-2.716	4.270

Replace X_1 with binary columns

<i>X</i> ₁	<i>X</i> ₂	Υ
S	-0.10	19.19
S	2.53	22.74
S	4.86	23.91
M	0.26	7.07
M	2.55	7.93
M	4.87	8.93
L	0.08	20.63
L	2.62	23.46
L	5.09	25.75

ONE-HOT ENCODING

X ₁₀	X ₁₁	X ₁₂	<i>X</i> ₂	Y
1	0	0	-0.10	19.19
1	0	0	2.53	22.74
1	0	0	4.86	23.91
0	1	0	0.26	7.07
0	1	0	2.55	7.93
0	1	0	4.87	8.93
0	0	1	0.08	20.63
0	0	1	2.62	23.46
0	0	1	5.09	25.75

Replace X_1 with binary columns

X_1	X_2	Y
S	-0.10	19.19
S	2.53	22.74
S	4.86	23.91
M	0.26	7.07
M	2.55	7.93
M	4.87	8.93
L	0.08	20.63
L	2.62	23.46
L	5.09	25.75

ONE-HOT ENCODING

0 0 2.53 0 0 4.86 1 0 0.26	Y
0 0 4.86 1 0 0.26	19.19
1 0 0.26	22.74
	23.91
	7.07
1 0 2.55	7.93
1 0 4.87	8.93
0 1 0.08	20.63
0 1 2.62	23.46
0 1 5.09	25.75

$$n = 9$$
$$p = 2$$

$$\uparrow \qquad \qquad n = 3 \\
p = 3$$

y = data2.Y
X = data2.drop(columns='Y',axis=1)

data2 = data0.copy()

X

	X1	X2
0	S	-0.10
1	S	2.53
2	S	4.86
3	М	0.26
4	М	2.55
5	М	4.87
6	L	0.08
7	L	2.62
8	L	5.09

select categorical columns

X_binary = pd.get_dummies(X,columns = ['X1'])
X_binary

	X2	X1_L	X1_M	X1_S
0	-0.10	0	0	1
1	2.53	0	0	1
2	4.86	0	0	1
3	0.26	0	1	0
4	2.55	0	1	0
5	4.87	0	1	0
6	0.08	1	0	0
7	2.62	1	0	0
8	5.09	1	0	0

select categorical columns

X_binary = pd.get_dummies(X,columns = ['X1'])
X binary

	X2	X1_L	X1_M	X1_S
0	-0.10	0	0	1
1	2.53	0	0	1
2	4.86	0	0	1
3	0.26	0	1	0
4	2.55	0	1	0
5	4.87	0	1	0
6	0.08	1	0	0
7	2.62	1	0	0
8	5.09	1	0	0

drop 1 binary column

	X2	X1_L	X1_M
0	-0.10	0	0
1	2.53	0	0
2	4.86	0	0
3	0.26	0	1
4	2.55	0	1
5	4.87	0	1
6	0.08	1	0
7	2.62	1	0
8	5.09	1	0

```
# rename columns
X_binary.columns = ['X2', 'L', 'M']
X_binary
```

	X2	L	М
0	-0.10	0	0
1	2.53	0	0
2	4.86	0	0
3	0.26	0	1
4	2.55	0	1
5	4.87	0	1
6	0.08	1	0
7	2.62	1	0
8	5.09	1	0

```
# reorder columns
X_binary = X_binary.reindex(columns = ['M','L','X2'])
X_binary
```

	M	L	X2
0	0	0	-0.10
1	0	0	2.53
2	0	0	4.86
3	1	0	0.26
4	1	0	2.55
5	1	0	4.87

```
m2 = LinearRegression().fit(X_binary,y)
R2 = m2.score(X_binary,y)
R2
```

0.9926482907525312

```
# Find adj R-squared with sklearn
```

$$n, p = 9, 3$$

print
$$(1 - (1-R2)*(n-1)/(n-p-1))$$

0.98823726520405

	M	L	X2
0	0	0	-0.10
1	0	0	2.53
2	0	0	4.86
3	1	0	0.26
4	1	0	2.55
5	1	0	4.87
6	0	1	0.08
7	0	1	2.62
8	0	1	5.09

```
m2.intercept_
19.96499706357271

m2.coef_
array([-14.07601525, 1.19741635, 0.81550189])
```

	M	L	X2
0	0	0	-0.10
1	0	0	2.53
2	0	0	4.86
3	1	0	0.26
4	1	0	2.55
5	1	0	4.87
6	0	1	80.0
7	0	1	2.62
8	0	1	5.09

```
m2.intercept
   19.96499706357271
  m2.coef
                                              1.19741635, 0.81550189])
  array([-14.07601525,
\hat{Y} = \begin{cases} 19.965 & +0.8155 X_2 & \text{when } X_1 = S \\ (19.965 - 14.076) & +0.8155 X_2 & \text{when } X_1 = M \\ (19.965 + 1.1974) & +0.8155 X_2 & \text{when } X_1 = L \end{cases}
```

			X2	
	М		7.475	m2.intercept
0	0	0	-0.10	
1	0	0	2.53	19.96499706357271
2	0	0	4.86	m2.coef_
3	1	0	0.26	array([-14.07601525, 1.19
4	1	0	2.55	additional intercepts
5	1	0	4.87	(10 007
6	0	1	0.08	$\int 19.965 +$
7	0	1	2.62	$\hat{Y} = \{ (19.965 - 14.076) + \}$
8	0	1	5.09	(19.965 + 1.1974) +

```
X2
741635,
         0.81550189])
             slope
-0.8155 X_2 when X_1 = S
-0.8155 X_2 when X_1 = M
-0.8155 X_2 when X_1 = L
```

Categorical Predictors – ENCODING

Which encoding is best?

Which encoding is best?

LABEL	ONE-HOT
ENCODING	ENCODING

R-squared 0.05259 0.9926

Adjusted R-squared: -0.2632 0.9882

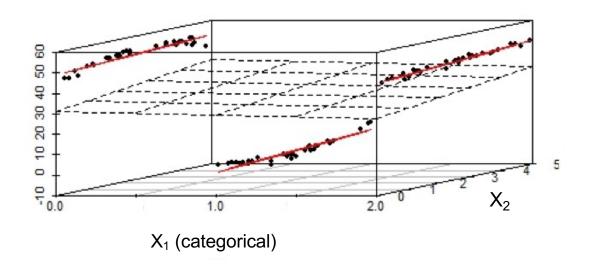
Why are the models different?

Label encoding equation

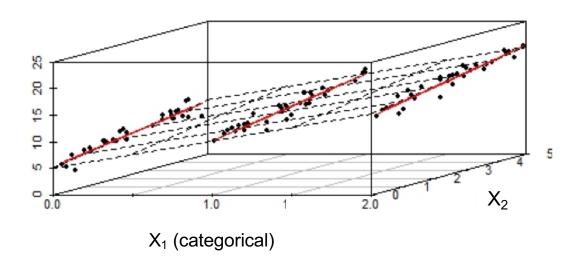
$$\hat{Y} = 15.16 + 0.602 X_1 - 0.77 X_2$$

One-hot encoding equations

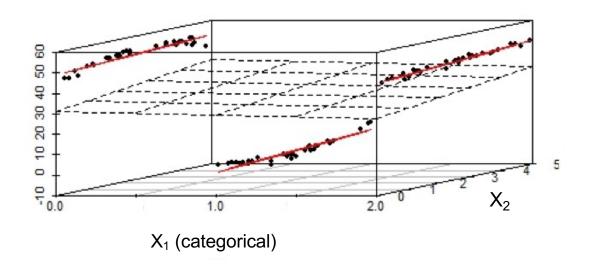
$$\hat{Y} = \begin{cases} 19.965 & +0.8155 X_2 & \text{when } X_1 = S \\ (19.965 - 14.076) & +0.8155 X_2 & \text{when } X_1 = M \\ (19.965 + 1.1974) & +0.8155 X_2 & \text{when } X_1 = L \end{cases}$$



- label encoding results in a regression plane
- one-hot encoding results in three regression lines (one for each category: 0,1,2)

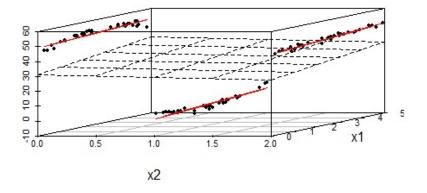


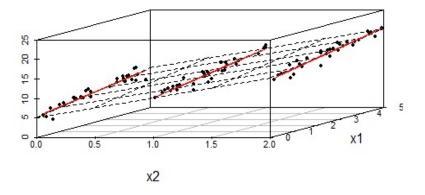
 If the observations are close to the plane, then label encoding and one-hot encoding may agree



 If the observations are far away from the plane then One-hot encoding results in a better model

- With a large number of variables in the model it is not possible to have a display like this
- We may relay on adj-R²
 or cross-validation error
 to choose the best
 model





Example 2

Forecasting with categorical variables

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import statsmodels.formula.api as smf

df = pd.read_csv('part2.csv')
```

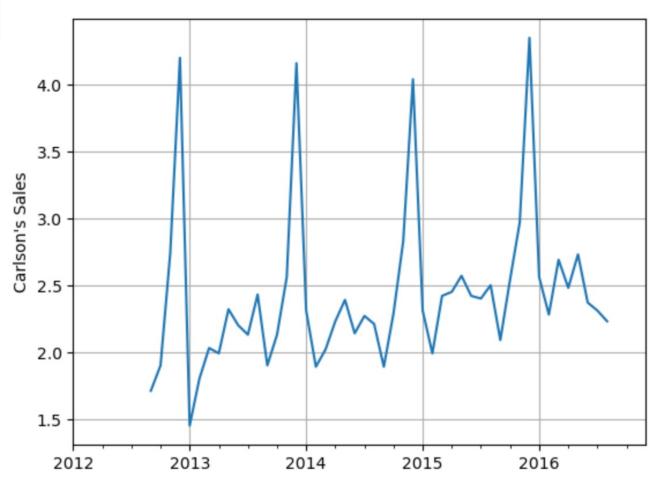
```
start = "2012-01-01"
end = "2016-12-01"

df.index = pd.date_range(start, end, freq='MS')
df[:5]
```

	Month	Year	sales
2012-01-01	January	2012	NaN
2012-02-01	February	2012	NaN
2012-03-01	March	2012	NaN
2012-04-01	April	2012	NaN
2012-05-01	May	2012	NaN

:

```
df['sales'].plot()
plt.xlabel("")
plt.ylabel("Carlson's Sales")
plt.grid();
```



•

How do we incorporate Month into the Model?

Month	Year	sales
October	2012	1.90
November	2012	2.74
December	2012	4.20
January	2013	1.45
February	2013	1.80
March	2013	2.03
April	2013	1.99
May	2013	2.32
June	2013	2.20
July	2013	2.13

Label encoding for categorical variable Month

predict sales using Year and Month

Month	Year	sales
January	2012	NaN
February	2012	NaN
March	2012	NaN
April	2012	NaN
May	2012	NaN
June	2012	NaN
July	2012	NaN
August	2012	NaN
September	2012	1.71
October	2012	1.90
November	2012	2.74
December	2012	4.20
January	2013	1.45
February	2013	1.80
March	2013	2.03
April	2013	1.99
May	2013	2.32
June	2013	2.20
July	2013	2.13
August	2013	2.43

predict sales using Year and Period

Month	Year	sales	Period
January	2012	NaN	1
February	2012	NaN	2
March	2012	NaN	3
April	2012	NaN	4
May	2012	NaN	5
June	2012	NaN	6
July	2012	NaN	7
August	2012	NaN	8
September	2012	1.71	9
October	2012	1.90	10
November	2012	2.74	11
December	2012	4.20	12
January	2013	1.45	1
February	2013	1.80	2
March	2013	2.03	3
April	2013	1.99	4
May	2013	2.32	5
June	2013	2.20	6
July	2013	2.13	7
August	2013	2.43	8

label encode

```
model2 = smf.ols('sales~ Period + Year',data = df).fit()
model2.summary()
```

OLS Regression Results

Dep. Variable:	sales	R-squared:	0.343

Model: OLS Adj. R-squared: 0.314

Method: Least Squares F-statistic: 11.75

Date: Thu, 14 May 2020 Prob (F-statistic): 7.86e-05

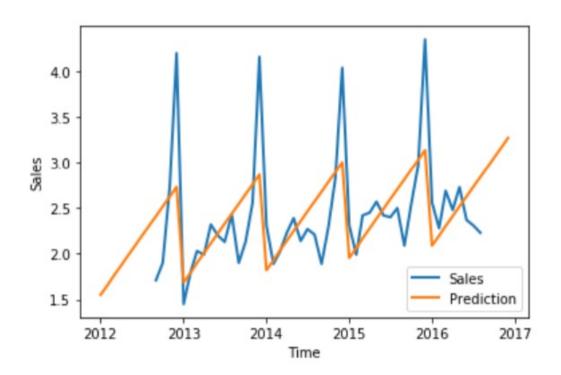
Time: 17:16:01 Log-Likelihood: -33.960

No. Observations: 48 AIC: 73.92

Df Residuals: 45 **BIC:** 79.53

Df Model: 2

Year	sales	Period
2012	NaN	1
2012	NaN	2
2012	NaN	3
2012	NaN	4
2012	NaN	5
2012	NaN	6
2012	NaN	7
2012	NaN	8
2012	1.71	9
2012	1.90	10
2012	2.74	11
2012	4.20	12
2013	1.45	1
2013	1.80	2
2013	2.03	3
2013	1.99	4
2013	2.32	5
2013	2.20	6
2013	2.13	7
2013	2.43	8



predict sales using Year and Period

Month	Year	sales	Period
January	2012	NaN	1
February	2012	NaN	2
March	2012	NaN	3
April	2012	NaN	4
May	2012	NaN	5
June	2012	NaN	6
July	2012	NaN	7
August	2012	NaN	8
September	2012	1.71	9
October	2012	1.90	10
November	2012	2.74	11
December	2012	4.20	12
January	2013	1.45	1
February	2013	1.80	2
March	2013	2.03	3
April	2013	1.99	4
May	2013	2.32	5
June	2013	2.20	6
July	2013	2.13	7
August	2013	2.43	8

One-hot encoding for categorical variable Month (with 12 categories)

predict sales using Year and Month

one-hot encode Month

(no coding needed with library smf)

Month	Year	sales
January	2012	NaN
February	2012	NaN
March	2012	NaN
April	2012	NaN
May	2012	NaN
June	2012	NaN
July	2012	NaN
August	2012	NaN
September	2012	1.71
October	2012	1.90
November	2012	2.74
December	2012	4.20
January	2013	1.45
February	2013	1.80
March	2013	2.03
April	2013	1.99
May	2013	2.32
June	2013	2.20
July	2013	2.13
August	2013	2.43

```
model3 = smf.ols('sales~Year+Month', data = df).fit()
model3.summary()
```

OLS Regression Results

Dep. Variable:	sales	R-squared:	0.947
----------------	-------	------------	-------

Model: OLS Adj. R-squared: 0.929

Method: Least Squares F-statistic: 52.35

Date: Thu, 14 May 2020 Prob (F-statistic): 1.01e-18

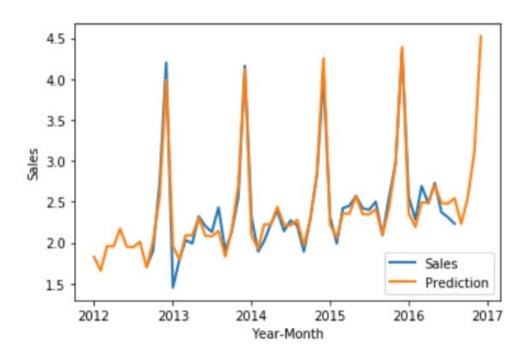
Time: 17:25:10 Log-Likelihood: 26.559

No. Observations: 48 AIC: -27.12

Df Residuals: 35 BIC: -2.792

Df Model: 12

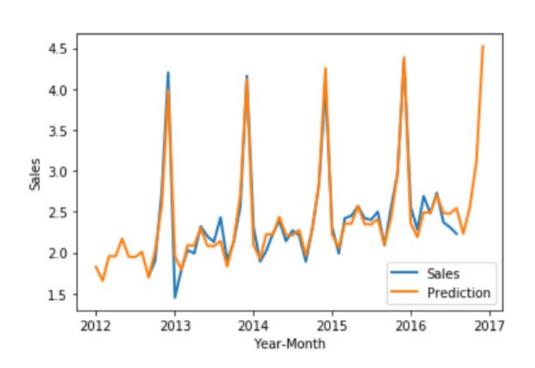
Month	Year	sales
January	2012	NaN
February	2012	NaN
March	2012	NaN
April	2012	NaN
May	2012	NaN
June	2012	NaN
July	2012	NaN
August	2012	NaN
September	2012	1.71
October	2012	1.90
November	2012	2.74
December	2012	4.20
January	2013	1.45
February	2013	1.80
March	2013	2.03
April	2013	1.99
May	2013	2.32
June	2013	2.20
July	2013	2.13
August	2013	2.43



this is *linear* regression

Month	Year	sales
January	2012	NaN
February	2012	NaN
March	2012	NaN
April	2012	NaN
Мау	2012	NaN
June	2012	NaN
July	2012	NaN
August	2012	NaN
September	2012	1.71
October	2012	1.90
November	2012	2.74
December	2012	4.20
January	2013	1.45
February	2013	1.80
March	2013	2.03
April	2013	1.99
May	2013	2.32
June	2013	2.20
July	2013	2.13
August	2013	2.43

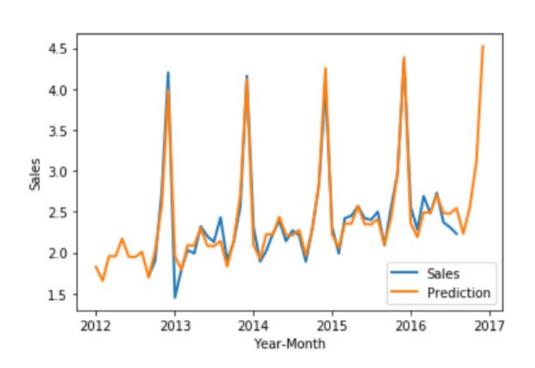
There are 12 regression equations (one for each month)



moders.params	
Intercept	-266.312500
Month[T.August]	0.055000
Month[T.December]	2.033333
Month[T.February]	-0.297500
Month[T.January]	-0.130000
Month[T.July]	-0.010000
Month[T.June]	-0.005000
Month[T.March]	0.002500
Month[T.May]	0.215000
Month[T.November]	0.620833
Month[T.October]	0.060833
Month[T.September]	-0.256667
Year	0.133333
dtype: float64	

model 3 params

There are 12 regression equations (April is base model)



-	
Intercept	-266.312500
Month[T.August]	0.055000
Month[T.December]	2.033333
Month[T.February]	-0.297500
Month[T.January]	-0.130000
Month[T.July]	-0.010000
Month[T.June]	-0.005000
Month[T.March]	0.002500
Month[T.May]	0.215000
Month[T.November]	0.620833
Month[T.October]	0.060833
Month[T.September]	-0.256667
Year	0.133333
dtype: float64	

model3.params

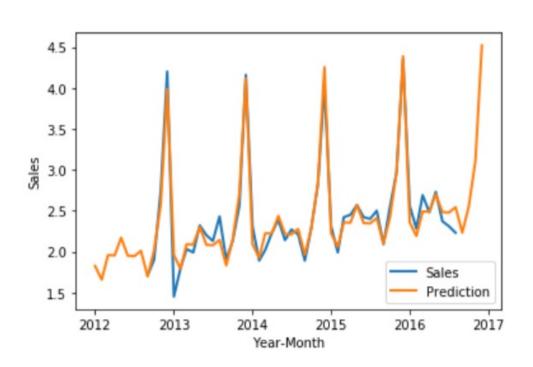
April prediction = -266.3125 + 0.1333 Year base model

There are 12 regression equations (April is base model)

model3.params

11 Additional intercepts

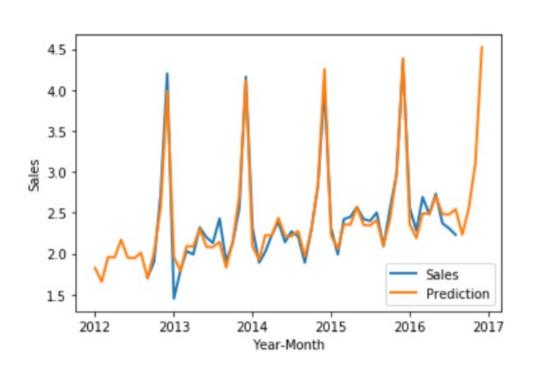
Intercept



Intercept	-266.312500
Month[T.August]	0.055000
Month[T.December]	2.033333
Month[T.February]	-0.297500
Month[T.January]	-0.130000
Month[T.July]	-0.010000
Month[T.June]	-0.005000
Month[T.March]	0.002500
Month[T.May]	0.215000
Month[T.November]	0.620833
Month[T.October]	0.060833
Month[T.September]	-0.256667
Year	0.133333
dtype: float64	

April prediction = -266.3125 + 0.1333 Year base model

There are 12 regression equations (April is base model)

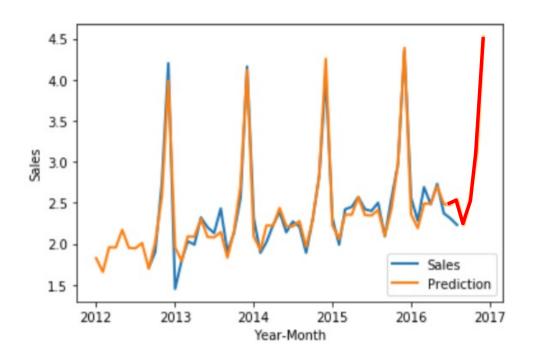


moders.params	
Intercept	-266.312500
Month[T.August]	0.055000
Month[T.December]	2.033333
Month[T.February]	-0.297500
Month[T.January]	-0.130000
Month[T.July]	-0.010000
Month[T.June]	-0.005000
Month[T.March]	0.002500
Month[T.May]	0.215000
Month[T.November]	0.620833
Month[T.October]	0.060833
Month[T.September]	-0.256667
Year	0.133333
dtype: float64	

model 3 narams

March prediction = (-266.3125 + 0.0025) + 0.1333 Year

EXAMPLE 2 – MODEL PREDICTIONS

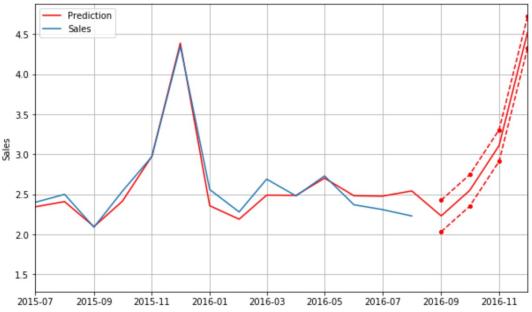


df['prediction'] = model3.predict(df)
df.tail()

	Month	Year	sales	prediction
2016-08-01	August	2016	2.23	2.542500
2016-09-01	September	2016	NaN	2.230833
2016-10-01	October	2016	NaN	2.548333
2016-11-01	November	2016	NaN	3.108333
2016-12-01	December	2016	NaN	4.520833

EXAMPLE 2 – MODEL PREDICTIONS

Predictions with CIs



	Month	Year	sales	Date	prediction	lower	upper
	June	2016	2.37	2016-06-01	2.482500	2.305126	2.659874
	July	2016	2.31	2016-07-01	2.477500	2.300126	2.654874
	August	2016	2.23	2016-08-01	2.542500	2.365126	2.719874
Sep	otember	2016	NaN	2016-09-01	2.230833	2.033966	2.427701
	October	2016	NaN	2016-10-01	2.548333	2.351466	2.745201
No	vember	2016	NaN	2016-11-01	3.108333	2.911466	3.305201
De	ecember	2016	NaN	2016-12-01	4.520833	4.323966	4.717701

One-hot encoding for categorical variables **Year** and Month

EXAMPLE 2 – BUILD MODEL4

Build a regression model with **Year** and Month as categorical variables

```
model4 = smf.ols('sales ~ C(Year) + C(Month)', data = df).fit()
model4.summary()
```

OLS Regression Results

Dep. Variable:	sales	R-squared:	0.951
Model:	OLS	Adj. R-squared:	0.928
Method:	Least Squares	F-statistic:	41.27
Date:	Mon, 27 Sep 2021	Prob (F-statistic):	1.17e-16
Time:	12:45:20	Log-Likelihood:	28.265
No. Observations:	48	AIC:	-24.53
Df Residuals:	32	BIC:	5.409
Df Model:	15		

EXAMPLE 2 – MODEL4 COEFFICIENTS WHEN ONE-HOT ENCODING YEAR

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.0492	0.127	16.170	0.000	1.791	2.307
C(Year)[T.2013]	0.0272	0.103	0.265	0.792	-0.182	0.236
C(Year)[T.2014]	0.1447	0.103	1.411	0.168	-0.064	0.354
C(Year)[T.2015]	0.3531	0.103	3.442	0.002	0.144	0.562
C(Year)[T.2016]	0.4283	0.116	3.683	0.001	0.191	0.665
C(Month)[T.August]	0.0550	0.116	0.473	0.639	-0.182	0.292
C(Month)[T.December]	2.0071	0.120	16.743	0.000	1.763	2.251
C(Month)[T.February]	-0.2975	0.116	-2.558	0.015	-0.534	-0.061
C(Month)[T.January]	-0.1300	0.116	-1.118	0.272	-0.367	0.107
C(Month)[T.July]	-0.0100	0.116	-0.086	0.932	-0.247	0.227
C(Month)[T.June]	-0.0050	0.116	-0.043	0.966	-0.242	0.232
C(Month)[T.March]	0.0025	0.116	0.021	0.983	-0.234	0.239
C(Month)[T.May]	0.2150	0.116	1.849	0.074	-0.022	0.452
C(Month)[T.November]	0.5946	0.120	4.960	0.000	0.350	0.839
C(Month)[T.October]	0.0346	0.120	0.288	0.775	-0.210	0.279
C(Month)[T.September]	-0.2829	0.120	-2.360	0.025	-0.527	-0.039

EXAMPLE 2 – PREPARE NEW DATAFRAME

Collect year 2016 rows from original DataFrame

	Month	Year	sales
48	January	2016	2.56
49	February	2016	2.28
50	March	2016	2.69
51	April	2016	2.48
52	May	2016	2.73
53	June	2016	2.37
54	July	2016	2.31
55	August	2016	2.23
56	September	2016	NaN
57	October	2016	NaN
58	November	2016	NaN
59	December	2016	NaN

EXAMPLE 2 – PREPARE NEW DATAFRAME TO PREDICT 2017 SALES

Collect year 2016
rows from original
DataFrame
to create a new one
for 2017

```
df4.Year = 2017
df4.sales = np.nan
df4
```

	Month	Year	sales
48	January	2017	NaN
49	February	2017	NaN
50	March	2017	NaN
51	April	2017	NaN
52	May	2017	NaN
53	June	2017	NaN
54	July	2017	NaN
55	August	2017	NaN
56	September	2017	NaN
57	October	2017	NaN
58	November	2017	NaN
59	December	2017	NaN

EXAMPLE 2 – PREDICT YEAR 2017 SALES

```
df4['prediction'] = model4.predict(df4)
KeyError
                                             Traceback (most recent call last)
/opt/anaconda3/lib/python3.7/site-packages/patsy/categorical.py in categorical
    345
                     try:
--> 346
                         out[i] = level to int[value]
    347
                     except KeyError:
KeyError: 2017
During handling of the above exception, another exception occurred:
Error converting data to categorical: observation with value 2017
does not match any of the expected levels
(expected: [2012, 2013, ..., 2015, 2016])
    sales ~ C(Year) + C(Month)
                                                Model has not been trained with category 2017
```

Example 3 MLR with categorical vars statsmodels.formula.api

EXAMPLE 3

- Use the homes.csv dataset to fit a full model for houses with two to four bedrooms.
- Find 95% PI for the price of a house with the following attributes

- two bedrooms
- three bathrooms
- garage for two cars
- high quality
- built in 1996
- area 3150 square feet
- size 26250 square feet
- with AC and pool
- not close to a highway

EXAMPLE 3 SOLUTION

```
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf

df0 = pd.read_csv('homes.csv')
df0[:3]
```

	price	area	beds	baths	garage	year	style	lotsize	ac	pool	quality	highway	
0	360000	3032	4	4	2	1972	1	22221	YES	NO	MEDIUM	NO	
1	340000	2058	4	2	2	1976	1	22912	YES	NO	MEDIUM	NO	
2	250000	1780	4	3	2	1980	1	21345	YES	NO	MEDIUM	NO	

EXAMPLE 3 SOLUTION

```
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf

df0 = pd.read_csv('homes.csv')
df0[:3]
```

	price	area	beds	baths	garage	year	style	lotsize	ac	pool	quality	highway
0	360000	3032	4	4	2	1972	1	22221	YES	NO	MEDIUM	NO
1	340000	2058	4	2	2	1976	1	22912	YES	NO	MEDIUM	NO
2	250000	1780	4	3	2	1980	1	21345	YES	NO	MEDIUM	NO

convert style to a categorical variable

EXAMPLE 3 SOLUTION

```
df0['style'] = df0['style'].astype(object)
df0.dtypes
           int64
price
           int64
area
beds
           int64
baths
      int64
           int64
garage
       int64
year
style
          object
lotsize int64
                            We will build a MLR Model
          object
ac
                            with five categorical variables
        object
pool
quality object
                            and six numerical variables
highway
          object
df = df0.copy()
df = df[(df.beds > 1) & (df.beds < 5)]
```

OLS Regression Results

Dep. Variable: price R-squared: 0.852

Model: OLS Adj. R-squared: 0.845

Method: Least Squares F-statistic: 135.9

EXAMPLE 3 SOLUTION – MODEL COEFFICIENTS

	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-2.473e+06	3.93e+05	-6.285	0.000	-3.25e+06	-1.7e+06	
C(style)[T.2]	-2.006e+04	8638.441	-2.322	0.021	-3.7e+04	-3080.425	
C(style)[T.3]	-1.151e+04	8251.632	-1.395	0.164	-2.77e+04	4707.107	categorical
C(style)[T.4]	2.31e+04	1.72e+04	1.346	0.179	-1.06e+04	5.68e+04	variable
C(style)[T.5]	-7407.6304	1.55e+04	-0.479	0.632	-3.78e+04	2.3e+04	style.
C(style)[T.6]	-3.06e+04	1.51e+04	-2.029	0.043	-6.02e+04	-951.905	Base level is
C(style)[T.7]	-4.664e+04	8514.836	-5.477	0.000	-6.34e+04	-2.99e+04	style 1
C(style)[T.9]	-9.094e+04	5.26e+04	-1.728	0.085	-1.94e+05	1.25e+04	

↑ T means category

C(ac)[T.YES]	-1075.0761	7501.411	-0.143	0.886	-1.58e+04	1.37e+04	
C(pool)[T.YES]	2.163e+04	1.06e+04	2.042	0.042	813.263	4.25e+04	
C(quality)[T.LOW]	-1.368e+05	1.45e+04	-9.433	0.000	-1.65e+05	-1.08e+05	categorical
C(quality)[T.MEDIUM]	-1.363e+05	1.08e+04	-12.640	0.000	-1.58e+05	-1.15e+05	variables
C(highway)[T.YES]	-3.18e+04	1.69e+04	-1.884	0.060	-6.5e+04	1380.295	
area	117.2176	7.739	15.146	0.000	102.006	132.429	
beds	-2222.9820	4148.594	-0.536	0.592	-1.04e+04	5931.279	
baths	9246.5631	4285.513	2.158	0.032	823.180	1.77e+04	numerical
garage	7423.7368	4914.563	1.511	0.132	-2236.074	1.71e+04	variables
year	1300.6190	199.782	6.510	0.000	907.938	1693.300	
lotsize	1.3283	0.238	5.584	0.000	0.861	1.796	

EXAMPLE 3 SOLUTION – BASE CATEGORY FOR QUALITY IS HIGH

C(ac)[T.YES]	-1075.0761	7501.411	-0.143	0.886	-1.58e+04	1.37e+04	
C(pool)[T.YES]	2.163e+04	1.06e+04	2.042	0.042	813.263	4.25e+04	
C(quality)[T.LOW]	-1.368e+05	1.45e+04	-9.433	0.000	-1.65e+05	-1.08e+05	categorical
C(quality)[T.MEDIUM]	-1.363e+05	1.08e+04	-12.640	0.000	-1.58e+05	-1.15e+05	variables
C(highway)[T.YES]	-3.18e+04	1.69e+04	-1.884	0.060	-6.5e+04	1380.295	
area	117.2176	7.739	15.146	0.000	102.006	132.429	
beds	-2222.9820	4148.594	-0.536	0.592	-1.04e+04	5931.279	
baths	9246.5631	4285.513	2.158	0.032	823.180	1.77e+04	numerical
garage	7423.7368	4914.563	1.511	0.132	-2236.074	1.71e+04	variables
year	1300.6190	199.782	6.510	0.000	907.938	1693.300	
lotsize	1.3283	0.238	5.584	0.000	0.861	1.796	

EXAMPLE 3 SOLUTION – Set the Base level for quality

OLS Regression Results

Dep. Variable:	price	R-squared:	0.852
Model:	OLS	Adj. R-squared:	0.845

EXAMPLE 3 SOLUTION – BASE LEVEL FOR QUALITY IS LOW

categorical variables			additional	interce	ot for qu	uality HIGH	
categorical variables	C(ac)[T.YES]	-1075.0761	7501.411	-0.143	0.886	-1.58e+04	1.37e+04
	C(pool)[T.YES]	2.163e+04	1.06e+04	2.042	0.042	813.263	4.25e+04
C(quality, Treatment(reference	="LOW"))[T.HIGH]	1.368e+05	1.45e+04	9.433	0.000	1.08e+05	1.65e+05
C(quality, Treatment(reference="L	OW"))[T.MEDIUM]	437.0813	7899.182	0.055	0.956	-1.51e+04	1.6e+04
	C(highway)[T.YES]	-3.18e+04	1.69e+04	-1.884	0.060	-6.5e+04	1380.295
	area	117.2176	7.739	15.146	0.000	102.006	132.429
	beds	-2222.9820	4148.594	-0.536	0.592	-1.04e+04	5931.279
num orical variables	baths	9246.5631	4285.513	2.158	0.032	823.180	1.77e+04
numerical variables	garage	7423.7368	4914.563	1.511	0.132	-2236.074	1.71e+04
	year	1300.6190	199.782	6.510	0.000	907.938	1693.300
	lotsize	1.3283	0.238	5.584	0.000	0.861	1.796

additional intercept for quality MEDIUM

EXAMPLE 3 SOLUTION – BASE LEVEL FOR QUALITY IS LOW

categorical variables			additional	price fo	r qualit	y HIGH	
categorical variables	C(ac)[T.YES]	-1075.0761	7501.411	-0.143	0.886	-1.58e+04	1.37e+04
	C(pool)[T.YES]	2.163e+04	1.06e+04	2.042	0.042	813.263	4.25e+04
C(quality, Treatment(reference	="LOW"))[T.HIGH]	1.368e+05	1.45e+04	9.433	0.000	1.08e+05	1.65e+05
C(quality, Treatment(reference="L	OW"))[T.MEDIUM]	437.0813	7899.182	0.055	0.956	-1.51e+04	1.6e+04
	C(highway)[T.YES]	-3.18e+04	1.69e+04	-1.884	0.060	-6.5e+04	1380.295
	area	117.2176	7.739	15.146	0.000	102.006	132.429
	beds	-2222.9820	4148.594	-0.536	0.592	-1.04e+04	5931.279
num origal variables	baths	9246.5631	4285.513	2.158	0.032	823.180	1.77e+04
numerical variables	garage	7423.7368	4914.563	1.511	0.132	-2236.074	1.71e+04
	year	1300.6190	199.782	6.510	0.000	907.938	1693.300
	lotsize	1.3283	0.238	5.584	0.000	0.861	1.796

additional price for quality MEDIUM

EXAMPLE 3 SOLUTION – NEW DATAFRAME FOR PREDICTION

```
newvalue = df[:1].copy()
del newvalue['price']

newvalue
```

	area	beds	baths	garage	year	style	lotsize	ac	pool	quality	highway
0	3032	4	4	2	1972	1	22221	YES	NO	MEDIUM	NO

EXAMPLE 3 SOLUTION – NEW DATAFRAME FOR PREDICTION

```
newvalue = df[:1].copy()
del newvalue['price']

newvalue
```

	area	beds	baths	garage	year	style	lotsize	ac	pool	quality	highway
0	3032	4	4	2	1972	1	22221	YES	NO	MEDIUM	NO

```
newvalue.area = 3150
                                               replace entries with those
newvalue.beds = 2
newvalue.baths = 3
                                               of the house whose price
newvalue.garage = 2
                                               is to be predicted
newvalue.year = 1996
newvalue.style = 1
newvalue.lotsize = 26250
newvalue.ac = 'YES'
newvalue.pool = 'YES'
                                          Modified dataframe newvalue
newvalue.quality = 'HIGH'
                                          in the next slide
newvalue.highway = 'NO'
```

newvalue

	area	beds	baths	garage	year	style	lotsize	ac	pool	quality	highway
0	3150	2	3	2	1996	1	26250	YES	YES	HIGH	NO

model1.predict(newvalue)

0 585922.526796

EXAMPLE 3 SOLUTION – CI and PI

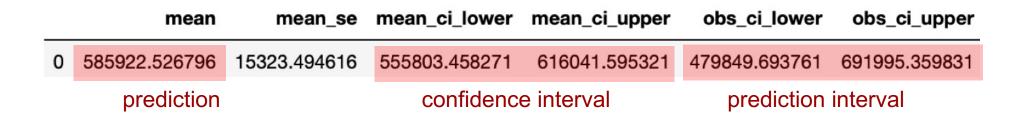
newvalue

	area	beds	baths	garage	year	style	lotsize	ac	pool	quality	highway
0	3150	2	3	2	1996	1	26250	YES	YES	HIGH	NO

```
model1.predict(newvalue)
```

0 585922.526796

```
df2 = model1.get_prediction(newvalue)
df2.summary_frame() alpha = 0.05
```



- two bedrooms
- three bathrooms
- garage for two cars
- high quality
- built in 1996
- area 3150 square feet
- size 26250 square feet
- with AC and pool
- not close to a highway

What is the estimated price of a house with this description?

	mean	mean_se	mean_ci_lower	mean_ci_upper	obs_ci_lower	obs_ci_upper
0	585922.526796	15323.494616	555803.458271	616041.595321	479849.693761	691995.359831

- two bedrooms
- three bathrooms
- garage for two cars
- high quality
- built in 1996
- area 3150 square feet
- size 26250 square feet
- with AC and pool
- not close to a highway

What is the estimated price of a house with this description?

What is a 95% range for this estimated price?

	mean	mean_se	mean_ci_lower	mean_ci_upper	obs_ci_lower	obs_ci_upper
0	585922.526796	15323.494616	555803.458271	616041.595321	479849.693761	691995.359831

EXAMPLE 3

- two bedrooms
- three bathrooms
- garage for two cars
- high quality
- built in 1996
- area 3150 square feet
- size 26250 square feet
- with AC and pool
- not close to a highway

What is the estimated average price of all houses with this description?

	mean	mean_se	mean_ci_lower	mean_ci_upper	obs_ci_lower	obs_ci_upper
0	585922.526796	15323.494616	555803.458271	616041.595321	479849.693761	691995.359831

EXAMPLE 3

- two bedrooms
- three bathrooms
- garage for two cars
- high quality
- built in 1996
- area 3150 square feet
- size 26250 square feet
- with AC and pool
- not close to a highway

What is the estimated average price of all houses with this description?

What is a 95% range for this estimated average?

	mean	mean_se	mean_ci_lower	mean_ci_upper	obs_ci_lower	obs_ci_upper
0	585922.526796	15323.494616	555803.458271	616041.595321	479849.693761	691995.359831

Example 3 MLR with categorical vars sklearn

EXAMPLE 3 – ONE-HOT ENCODING

- With statsmodels.formula.api, one-hot encoding is the default. The user does not need to create binary columns
- With sklearn the user must transform categorical columns into binary columns using pd.get_dummies()

EXAMPLE 3 with SKLEARN

```
import numpy as np
import pandas as pd
```

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
```

```
df0 = pd.read_csv('homes.csv')
df0[:3]
```

	price	area	beds	baths	garage	year	style	lotsize	ac	pool	quality	highway
0	360000	3032	4	4	2	1972	1	22221	YES	NO	MEDIUM	NO
1	340000	2058	4	2	2	1976	1	22912	YES	NO	MEDIUM	NO
2	250000	1780	4	3	2	1980	1	21345	YES	NO	MEDIUM	NO

EXAMPLE 3 with SKLEARN

Change style to categorical

```
df0['style'] = df0['style'].astype(object)
df0.dtypes
```

```
price
        int64
       int64
area
beds
    int64
baths int64
garage int64
    int64
year
style object
       int64
lotsize
        object
ac
        object
pool
quality object
highway object
```

ONE-HOT ENCODING – Create binary columns for categoricals

ONE-HOT ENCODING – Create binary columns for <u>all </u>categoricals

ONE-HOT ENCODING – Create binary columns for *all* **categoricals**

	price	area	beds	baths	garage	year	lotsize	style_2	style_3	style_4	style_5	style_6
0	360000	3032	4	4	2	1972	22221	0	0	0	0	0
1	340000	2058	4	2	2	1976	22912	0	0	0	0	0
2	250000	1780	4	3	2	1980	21345	0	0	0	0	0
3	205500	1638	4	2	2	1963	17342	0	0	0	0	0
4	275500	2196	4	3	2	1968	21786	0	0	0	0	0

EXAMPLE 3 with SKLEARN – Create binary columns for categoricals

df

	price	area	beds	baths	garage	year	style	lotsize	ac	pool	quality	highway
0	360000	3032	4	4	2	1972	1	22221	YES	NO	MEDIUM	NO
1	340000	2058	4	2	2	1976	1	22912	YES	NO	MEDIUM	NO
2	250000	1780	4	3	2	1980	1	21345	YES	NO	MEDIUM	NO

df2

	price	area	beds	baths	garage	year	lotsize	style_2	style_3	style_4	style_5	style_6
0	360000	3032	4	4	2	1972	22221	0	0	0	0	0
1	340000	2058	4	2	2	1976	22912	0	0	0	0	0
2	250000	1780	4	3	2	1980	21345	0	0	0	0	0
3	205500	1638	4	2	2	1963	17342	0	0	0	0	0
4	275500	2196	4	3	2	1968	21786	0	0	0	0	0

EXAMPLE 3 with SKLEARN – Create binary columns for categoricals

·-	price	area	beds	baths	garage	year	style	lotsize	ac	pool	quality	highway
0	360000	3032	4	4	2	1972	1	22221	YES	NO	MEDIUM	NO
1	340000	2058	4	2	2	1976	1	22912	YES	NO	MEDIUM	NO
2	250000	1780	4	3	2	1980	1	21345	YES	NO	MEDIUM	NO

	price	area	beds	baths	garage	year	lotsize	style_2	style_3	style_4	style_5	style_6
0	360000	3032	4	4	2	1972	22221	0	0	0	0	0
1	340000	2058	4	2	2	1976	22912	0	0	0	0	0
2	250000	1780	4	3	2	1980	21345	0	0	0	0	0
3	205500	1638	4	2	2	1963	17342	0	0	0	0	0
4	275500	2196	4	3	2	1968	21786	0	0	0	0	0

when style = 1 all other styles are equal to 0

EXAMPLE 3 with SKLEARN – Get the Regression model

```
y = df2.price
X = df2.drop(columns = 'price',axis = 1)

model2 = LinearRegression().fit(X,y)

# MSE

# R-squared

wodel2.score(X,y)

model2.score(X,y)

0.8516357572716687

split df2 into response and predictors

# MSE

which is price',axis = 1)

# MSE

yhat = model2.predict(X)

MSE = mean_squared_error(y,yhat)
MSE

2563201465.1350064
```

EXAMPLE 3 with SKLEARN

EXAMPLE 3 with SKLEARN – Display regression coefficients in a dataframe df3

coef		coef	
23097.27	style_4	117.22	area
-7407.63	style_5	-2222.98	beds
-30595.70	style_6	9246.56	baths
-46636.80	style_7	7423.74	garage
-90937.91	style_9	1300.62	
-1075.08	ac_YES		year
21631.70	pool_YES	1.33	lotsize
-136786.65	quality_LOW	-20059.70	style_2
-136349.57	quality_MEDIUM	-11511.87	style_3
-31800.51	highway_YES		

EXAMPLE 3 with SKLEARN - PREDICTION

```
newvalue = df2[:1].copy()
del newvalue['price']
newvalue
```

	area	beds	baths	garage	year	lotsize	style_2	style_3	style_4	style_5
(3032	4	4	2	1972	22221	0	0	0	0

style_6	style_7	style_9	ac_YES	pool_YES	quality_LOW	quality_MEDIUM
0	0	0	1	0	0	1

EXAMPLE 3 with SKLEARN - PREDICTION

```
newvalue.area = 3150
newvalue.beds = 2
newvalue.baths = 3
newvalue.garage = 2
newvalue.year = 1996
newvalue.lotsize = 26250
newvalue.ac_YES = 1
newvalue.pool_YES = 1
newvalue.quality_LOW = 0
newvalue.quality_MEDIUM = 0
newvalue.highway_YES = 0
```

```
model2.predict(newvalue)
array([585922.52679621])
```