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o This is linear regression

OVERVIEW
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o Is this linear regression?

o Negative Adj R-square
o one-hot encoding with sklearn

OVERVIEW
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• Y1, Y2, ...,Yn  are random vars.

• independent    (independence)

• normal     (normality)

• with same variance (constant variance)

• Model

REGRESSION ASSUMPTIONS
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• Y1, Y2, ...,Yn  are random vars.
• independent    (independence)

• normal     (normality)

• with same variance (constant variance)

• Model

  random variables

REGRESSION ASSUMPTIONS
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• Y1, Y2, ...,Yn  are random vars.
• independent    (independence)

• normal     (normality)

• with same variance (constant variance)

• Model

   not random

REGRESSION ASSUMPTIONS
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• Y1, Y2, ...,Yn  are random vars.

• independent    (independence)

• normal     (normality)

• with same variance (constant variance)

REGRESSION ASSUMPTIONS

Regression
Model
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o Regression models review
o Regression with a Categorical predictor 
 (with 2 or 3 categories)
o Interaction between predictors
o Examples

• Encoding methods
• Forecasting with categorical variables
• Regression with many categorical variables

OVERVIEW
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Regression with a Categorical Variable

with 2 categories

EXAMPLES
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Introductory Example 1

EXAMPLES
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How do we incorporate 
X1 in the model?

REGRESSION WITH A CATEGORICAL VARIABLE
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• X1 to be replaced by 
binary variables

• The number p of 
predictors will 
change

REGRESSION WITH A CATEGORICAL VARIABLE
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• Binary variable S is 
not needed

• When M = 0, L = 0, 
X1 must be S

REGRESSION WITH A CATEGORICAL VARIABLE
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• Binary variable S is 
not needed

• When M = 0, L = 0, 
X1 must be S

• The number of 
binary variables is 
equal to the 
number of 
categories minus 1

REGRESSION WITH A CATEGORICAL VARIABLE
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.

p = 2             p = 3

→
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Transform this model

into 

this new model

REGRESSION WITH A CATEGORICAL VARIABLE
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Transform this model

into 

this new model

substituting X1

with binary variables 
M and L

REGRESSION WITH A CATEGORICAL VARIABLE
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Introductory Example 2

EXAMPLES
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Predict the Price of a car using MPG.city and Origin

REGRESSION WITH A CATEGORICAL VARIABLE

Y  numerical categorical



Cesar Acosta Ph.D.

Origin with two categories

• USA cars
• non-USA cars

We will find an OLS line 
for each category 
in just one model

REGRESSION WITH A CATEGORICAL VARIABLE

Y  X2   X1
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Notation
 Y   :  Price of the car
 X1 :  Origin (USA car, non-USA car)
 X2 :  City Mileage (MPG.city)

replace X1 with a binary variable

REGRESSION WITH A CATEGORICAL VARIABLE
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Model

becomes two models

REGRESSION WITH A CATEGORICAL VARIABLE
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Model

becomes two models

REGRESSION WITH A CATEGORICAL VARIABLE
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Model

resulting in two OLS lines

REGRESSION WITH A CATEGORICAL VARIABLE

• For US cars

• For non-US cars
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Model

resulting in two OLS lines

REGRESSION WITH A CATEGORICAL VARIABLE

additional intercept ↑ ↑ slope
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.

REGRESSION WITH A CATEGORICAL VARIABLE
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b0 
b1  
b2

Fit Model

REGRESSION WITH A CATEGORICAL VARIABLE

←  Additional intercept
←  slope
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Fit Model

REGRESSION WITH A CATEGORICAL VARIABLE

Model for US cars

←  slope
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Fit Model

REGRESSION WITH A CATEGORICAL VARIABLE

Model for US cars

Model for non-US cars

additional intercept

←  Additional intercept
←  slope
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How much more expensive are 

non-US cars?

EXAMPLE 2
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How much more expensive are non-US cars?

non-USA cars are on average $1,936 more expensive

PIVOT TABLE
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.

SCATTERPLOT with data points classified by Origin



Cesar Acosta Ph.D.

non-USA cars are
on average 
more expensive

SCATTERPLOT with data points classified by Origin
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non-USA cars are
on average 
more expensive

PIVOT TABLE and SCATTERPLOT

difference     1.936

Average

non-USA

USA
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SCATTERPLOT with data points classified by Origin

difference     1.936

Average
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SCATTERPLOT with data points classified by Origin

difference     1.936

Average
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.

REGRESSION MODEL

Model for non-US cars

Model for US cars
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.

REGRESSION MODEL

Model for non-US cars

Model for US cars
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b1 is the difference
in the average price
between USA and
non-USA cars (if X2

is the same)

REGRESSION MODEL

Model for non-US cars

Model for US cars

b1
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non-USA cars are on 
average $5,264
more expensive when 
comparing cars with 
the same mileage

REGRESSION WITH A CATEGORICAL VARIABLE
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non-USA cars are on 
average $5,264
more expensive when 
the effect of the other 
variable is removed

REGRESSION WITH A CATEGORICAL VARIABLE
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How much more expensive are non-USA cars?

 Pivot Table       Regression model

REGRESSION WITH A CATEGORICAL VARIABLE

$5,264

$1,936
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• How much more expensive are non-USA cars than 
USA cars, irrespective of the mileage?
non-US cars are on average $1,936 more expensive

How much more expensive are non-USA cars?



Cesar Acosta Ph.D.

• How much more expensive are non-USA cars than 
USA cars, irrespective of the mileage?
non-US cars are on average $1,936 more expensive

• How much more expensive are non-USA cars than 
USA cars, having the same mileage?
Comparing cars with the same mileage, non-US 
cars are on average $5,264 more expensive

How much more expensive are non-USA cars?
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Comparing cars with the same mileage X2, 
non-US cars are on average $5,264 more 
expensive

REGRESSION WITH A CATEGORICAL VARIABLE

Model for US cars

Model for non-US cars

Price difference if both models use the same X2 
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Regression with a Categorical Variable

with 3 categories

EXAMPLES
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Predict the Price of a car using MPG.city and AirBags

REGRESSION WITH A CATEGORICAL VARIABLE

Y  numerical  categorical
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AirBags categories

• No airbags

• Driver only

• Driver and Passenger

REGRESSION WITH A CATEGORICAL VARIABLE
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AirBags populations

• No airbags

• Driver only

• Driver and Passenger

Find an OLS line for each 

population

REGRESSION WITH A CATEGORICAL VARIABLE
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How do we incorporate 

AirBags into the model?

REGRESSION WITH A CATEGORICAL VARIABLE
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Use binary variables

• No airbags  

• Driver only   X11

• Driver and Passenger X12

REGRESSION WITH A CATEGORICAL VARIABLE

X1X2
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Y:  Price of the car
X2 : MPG.city
X1 : AirBags

Transform this model

into 

this new model

REGRESSION WITH A CATEGORICAL VARIABLE (3 CATEGORIES)

3 categories     numerical
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Y:  Price of the car
X2 : MPG.city
X1 : AirBags

Transform this model

into 

this new model

REGRESSION WITH A CATEGORICAL VARIABLE (3 CATEGORIES)

3 categories     numerical
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Transform this model

into this new model

REGRESSION WITH A CATEGORICAL VARIABLE
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New Model

Becomes three models

REGRESSION WITH A CATEGORICAL VARIABLE

is defined when 
all binary 
variables are
set equal to 0

← base model
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Model

Three OLS lines

REGRESSION WITH A CATEGORICAL VARIABLE

base category 
is “no airbag”

additional intercepts

Model for cars with

• No AirBags

• Driver Only airbags

• Driver & Passenger
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category labels

• No

• Driver only

• Driver & Passenger

REGRESSION WITH A CATEGORICAL VARIABLE
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REGRESSION WITH A CATEGORICAL VARIABLE
select “car with No airbag” as base category
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REGRESSION WITH A CATEGORICAL VARIABLE – PARAMETERS

← Add. intercept
← Add. intercept
← slope
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REGRESSION WITH A CATEGORICAL VARIABLE – 3 Models

base 
model
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REGRESSION WITH A CATEGORICAL VARIABLE

No Airbag

Driver only
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REGRESSION WITH A CATEGORICAL VARIABLE

No Airbag

Driver only

Driver & Passenger
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How much more expensive are 

cars with airbags?

EXAMPLE 2
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cars with airbags 
are on average 
more expensive

REGRESSION WITH A CATEGORICAL VARIABLE – PIVOT TABLE
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cars with airbags 
are on average 
more expensive

REGRESSION WITH A CATEGORICAL VARIABLE
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b11 is the 
difference in 
the average price
between cars with
No Airbags (base)
and cars with 
Driver Only airbag

REGRESSION WITH A CATEGORICAL VARIABLE
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b12 is the 
difference in 
the average price
between cars with
No Airbags (base)
and cars with 
Driver and Passenger
airbags

REGRESSION WITH A CATEGORICAL VARIABLE
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How much expensive is 
a car with Driver and 
Passenger
airbags 
than a car with
No Airbags (base)?

REGRESSION WITH A CATEGORICAL VARIABLE
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How much expensive 
is a car with 
Driver and Passenger 
airbags 
than a car with
No Airbags (base)?

On average, it is 
$11,210 dollars more 
expensive, 

if the cars have same 
Mileage

REGRESSION WITH A CATEGORICAL VARIABLE

$11.21
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How much expensive 
is a car with 
Driver and Passenger
airbags 
than a car with
No Airbags (base)?

On average, it is 
$15,190 dollars more 
expensive, 
irrespective of the 
cars Mileage

REGRESSION WITH A CATEGORICAL VARIABLE

15.195221
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Regression with interaction
between predictors
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• What is a predictor’s effect on Y?

• What is interaction?
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o The effect of predictor X1 on Y is the average amount Y 
changes when X1 increases by one unit

o The effect of predictor X1 on Y is estimated by the 
regression coefficient of X1 in the regression model

OVERVIEW
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o The effect of predictor X1 on Y is the average amount Y 
changes when X1 increases by one unit

o The effect of predictor X1 on Y is estimated by the 
regression coefficient of X1 in the regression model

o Interaction occurs when the effect of a predictor X2 on Y 
depends on the value or category of another predictor X1

o The interaction of X1 and X2 is estimated by the regression 
coefficient of the term X1X2 in the model

OVERVIEW
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• The effect of one 
predictor on the 
response Y is given 
by the slope

EFFECTS OF X  ON Y – NO INTERACTION

slopes
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• The effect of X1 on the 
response Y is given by 
the slope of X1

• If X1 increases by one 
unit then Y increases 
by 0.1015, on average

• all other variables 
held constant

EFFECT OF X1  ON Y – NO INTERACTION

effect of X1 on Y
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• The effect of X5 on the 
response Y is given by 
the slope of X5

• If X5 increases by one 
unit then Y decreases 
by 0.2385, on average

• all other variables 
held constant

EFFECT OF X5 ON Y – NO INTERACTION

effect of X5 on Y
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• Y = Price decreases 
with X2 = MPG.city

• The effect of    
• X2 = MPG.city on 
• Y = Price,  is given by 

the coeff. of X2 (slope)
• The slope is the same 

for all categories of
• X1 = Origin
• No interaction between

• X1 = Origin with 
• X2 = MPG.city

NO INTERACTION MODEL

categories 
of variable 
X1 = Origin

X2

Y
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• Price decreases with 
MPG.city

• Different categories of 
Origin result in 
different slopes

• Price decreases faster 
on non-US cars

• The effect of predictor 
MPG.city on Price 
depends on the 
category of Origin

MODEL WITH INTERACTION

X2
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Model
with
interaction

INTERACTION BETWEEN NUMERIC VARIABLE X2 AND A CATEGORICAL VARIABLE X1 

X1 = Origin

X2 = MPG.city
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Model
with
interaction

INTERACTION BETWEEN NUMERIC VARIABLE X2 AND A CATEGORICAL VARIABLE X1 

interaction term

X1 = Origin

X2 = MPG.city
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Model

Two OLS lines

INTERACTION BETWEEN NUMERIC VARIABLE X2 AND A CATEGORICAL VARIABLE X1 

base model
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Model

Two OLS lines

INTERACTION BETWEEN NUMERIC VARIABLE X2 AND A CATEGORICAL VARIABLE X1 

additional intercept additional slope

← model for 
non-US cars

← model for 
US cars
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Fit Model

Two OLS lines

MODEL WITH NO INTERACTION

additional intercept

b0
b1  additional intercept 
b2

← model for 
non-US cars

← model for 
US cars
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Fit Model

Two OLS lines

MODEL WITH INTERACTION

b0
b1   additional intercept  
b2
b12  additional slope

• For US cars

• For non-US cars
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Fit Model

Two OLS lines

MODEL WITH INTERACTION

additional intercept additional slope

b0
b1   additional intercept  
b2
b12  additional slope

• For US cars

• For non-US cars
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Fit Model

Two OLS lines

INTERACTION BETWEEN NUMERIC VARIABLE X2 AND A CATEGORICAL VARIABLE X1 

base
model

• For US cars

• For non-US cars
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Fit Model

Two OLS lines

INTERACTION BETWEEN NUMERIC VARIABLE X2 AND A CATEGORICAL VARIABLE X1 

non-base
model

• For US cars

• For non-US cars

additional intercept additional slope
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non-USA cars are
on average 
more expensive

INTERACTION BETWEEN NUMERIC VARIABLE X2 AND A CATEGORICAL VARIABLE X1 



Cesar Acosta Ph.D.

The difference
in the average price
(between USA and
non-USA cars)
changes as 
mileage increases

INTERACTION BETWEEN NUMERIC VARIABLE X2 AND A CATEGORICAL VARIABLE X1 

non-USA cars
USA cars

small difference

large difference
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Encoding Methods

Example 1
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Categorical Predictors – EXAMPLE

X1 X2 Y

S -0.10 19.19
S 2.53 22.74
S 4.86 23.91
M 0.26 7.07
M 2.55 7.93
M 4.87 8.93
L 0.08 20.63
L 2.62 23.46
L 5.09 25.75

Consider the following dataset

        n = 9
        p = 2
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Consider the following dataset

X1 X2 Y

S -0.10 19.19
S 2.53 22.74
S 4.86 23.91
M 0.26 7.07
M 2.55 7.93
M 4.87 8.93
L 0.08 20.63
L 2.62 23.46
L 5.09 25.75

X1 X2 Y

0 -0.10 19.19
0 2.53 22.74
0 4.86 23.91
1 0.26 7.07
1 2.55 7.93
1 4.87 8.93
2 0.08 20.63
2 2.62 23.46
2 5.09 25.75

Categorical Predictors – EXAMPLE

label encoding
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.

Categorical Predictors – LABEL ENCODING
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Get the Regression Model and the results
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Get the Regression Model and the results

very small

negative!
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Library statsmodels
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Replace X1 with binary columns                        ONE-HOT ENCODING

X1 X2 Y
S -0.10 19.19
S 2.53 22.74
S 4.86 23.91
M 0.26 7.07
M 2.55 7.93
M 4.87 8.93
L 0.08 20.63
L 2.62 23.46
L 5.09 25.75

Categorical Predictors – ONE-HOT ENCODING
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Replace X1 with binary columns              ONE-HOT ENCODING

          n = 9       n = 9
          p = 2       p = 3

X1 X2 Y
S -0.10 19.19
S 2.53 22.74
S 4.86 23.91
M 0.26 7.07
M 2.55 7.93
M 4.87 8.93
L 0.08 20.63
L 2.62 23.46
L 5.09 25.75

Categorical Predictors – ONE-HOT ENCODING
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.

Categorical Predictors – ONE-HOT ENCODING

select categorical columns
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.

Categorical Predictors – ONE-HOT ENCODING

drop 1 binary columnselect categorical columns
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Categorical Predictors – ONE-HOT ENCODING
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Categorical Predictors – ONE-HOT ENCODING



Cesar Acosta Ph.D.

.

Categorical Predictors – ONE-HOT ENCODING



Cesar Acosta Ph.D.

.

Categorical Predictors – ONE-HOT ENCODING
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.

Categorical Predictors – ONE-HOT ENCODING

M    L    X2

additional intercepts slope
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Which encoding is best?

Categorical Predictors – ENCODING
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     LABEL    ONE-HOT 
    ENCODING  ENCODING

R-squared   0.05259  0.9926

Adjusted R-squared:  -0.2632  0.9882

Which encoding is best?
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Why are the models different?
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Label encoding equation

One-hot encoding equations

Categorical Predictors – EXAMPLE
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• label encoding results in a regression plane
• one-hot encoding results in three regression lines 

(one for each category: 0,1,2)

Categorical Predictors – EXAMPLE

X2

X1 (categorical)
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• If the observations are close to the plane, then
• label encoding and one-hot encoding may agree

Categorical Predictors – EXAMPLE

X1 (categorical)

X2
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• If the observations are far away from the plane 
then One-hot encoding results in a better model

Categorical Predictors – EXAMPLE

X1 (categorical)

X2
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• With a large number of 
variables in the model it 
is not possible to have a 
display like this

• We may relay on adj-R2 
or cross-validation error 
to choose the best 
model

Categorical Predictors – EXAMPLE
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Example 2

Forecasting with categorical variables
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.

Categorical Predictors – EXAMPLE 2

...
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.

Categorical Predictors – EXAMPLE 2

...
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How do we 
incorporate Month 
into the Model?

Categorical Predictors – EXAMPLE 2
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Label encoding
for categorical variable Month
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predict sales using Year and Month

EXAMPLE 2 – LABEL ENCODING
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predict sales using Year and Period

label encode

EXAMPLE 2 – LABEL ENCODING
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EXAMPLE 2 – LABEL ENCODING

rows with NaN are ignored 
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 predict sales using Year and Period

EXAMPLE 2 – LABEL ENCODING
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One-hot encoding
for categorical variable Month

(with 12 categories)
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predict sales using Year and Month

one-hot encode Month 

(no coding needed with library smf)

EXAMPLE 2 – ONE-HOT ENCODING



Cesar Acosta Ph.D.

EXAMPLE 2 – ONE-HOT ENCODING
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     this is linear regression

EXAMPLE 2 – ONE-HOT ENCODING
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There are 12 regression equations (one for each month)

EXAMPLE 2 – ONE-HOT ENCODING
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There are 12 regression equations (April is base model)

EXAMPLE 2 – ONE-HOT ENCODING

base model
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There are 12 regression equations (April is base model)

EXAMPLE 2 – ONE-HOT ENCODING

base model

11 Additional
intercepts
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There are 12 regression equations (April is base model)

EXAMPLE 2 – ONE-HOT ENCODING
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.

EXAMPLE 2 – MODEL PREDICTIONS
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Predictions with CIs

EXAMPLE 2 – MODEL PREDICTIONS
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One-hot encoding
for categorical variables Year 

and Month
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Build a 
regression 
model 
with Year and 
Month
as categorical 
variables

EXAMPLE 2 – BUILD MODEL4



Cesar Acosta Ph.D.

.

EXAMPLE 2 – MODEL4 COEFFICIENTS WHEN ONE-HOT ENCODING YEAR
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Collect year 2016 

rows from original 

DataFrame

EXAMPLE 2 – PREPARE NEW DATAFRAME
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Collect year 2016 

rows from original 

DataFrame

to create a new one 

for 2017

EXAMPLE 2 – PREPARE NEW DATAFRAME TO PREDICT 2017 SALES
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.

EXAMPLE 2 – PREDICT YEAR 2017 SALES

Model has not been trained with category 2017
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Example 3
MLR with categorical vars
statsmodels.formula.api
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o two bedrooms
o three bathrooms
o garage for two cars
o high quality
o built in 1996
o area 3150 square feet
o size 26250 square feet
o with AC and pool
o not close to a highway

EXAMPLE 3

• Use the homes.csv 
dataset to fit a full 
model for houses 
with two to four 
bedrooms.
• Find 95% PI for the 

price of a house 
with the following 
attributes
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.

EXAMPLE 3 SOLUTION
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.

EXAMPLE 3 SOLUTION

convert style to a categorical variable
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.

EXAMPLE 3 SOLUTION

We will build a MLR Model 
with five categorical variables 
and six numerical variables
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EXAMPLE 3 SOLUTION
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EXAMPLE 3 SOLUTION
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.

EXAMPLE 3 SOLUTION – MODEL COEFFICIENTS

categorical
variable 
style.
Base level is
style 1

↑    T means category
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categorical 

variables

numerical 

variables

EXAMPLE 3 SOLUTION
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categorical 

variables

numerical 

variables

EXAMPLE 3 SOLUTION – BASE CATEGORY FOR QUALITY IS HIGH
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EXAMPLE 3 SOLUTION – Set the Base level for quality
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categorical variables

numerical variables

EXAMPLE 3 SOLUTION – BASE LEVEL FOR QUALITY IS LOW

additional intercept for quality HIGH

additional intercept for quality MEDIUM
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categorical variables

numerical variables

EXAMPLE 3 SOLUTION – BASE LEVEL FOR QUALITY IS LOW

additional price for quality HIGH

additional price for quality MEDIUM
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EXAMPLE 3 SOLUTION – NEW DATAFRAME FOR PREDICTION

copy 1st row only
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EXAMPLE 3 SOLUTION – NEW DATAFRAME FOR PREDICTION

Modified dataframe newvalue 
in the next slide

copy 1st row only

replace entries with those 
of the house whose price 
is to be predicted
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EXAMPLE 3 SOLUTION
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EXAMPLE 3 SOLUTION – CI and PI

prediction    confidence interval   prediction interval

alpha = 0.05
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• two bedrooms
• three bathrooms
• garage for two cars
• high quality
• built in 1996
• area 3150 square feet
• size 26250 square feet
• with AC and pool
• not close to a highway

EXAMPLE 3 SOLUTION

What is the estimated price of 
a house with this description?
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• two bedrooms
• three bathrooms
• garage for two cars
• high quality
• built in 1996
• area 3150 square feet
• size 26250 square feet
• with AC and pool
• not close to a highway

EXAMPLE 3 SOLUTION

What is the estimated price of 
a house with this description?

What is a 95% range 
for this estimated price?

prediction interval
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EXAMPLE 3

What is the estimated average price 
of all houses with this description?

• two bedrooms
• three bathrooms
• garage for two cars
• high quality
• built in 1996
• area 3150 square feet
• size 26250 square feet
• with AC and pool
• not close to a highway
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EXAMPLE 3

What is the estimated average price 
of all houses with this description?

What is a 95% range 
for this estimated average?

• two bedrooms
• three bathrooms
• garage for two cars
• high quality
• built in 1996
• area 3150 square feet
• size 26250 square feet
• with AC and pool
• not close to a highway

confidence interval
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Example 3
MLR with categorical vars

sklearn
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• With statsmodels.formula.api, one-hot encoding is 
the default. The user does not need to create binary 
columns

• With sklearn the user must transform categorical 
columns into binary columns using 
pd.get_dummies( )

EXAMPLE 3 – ONE-HOT ENCODING
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.

EXAMPLE 3 with SKLEARN
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.

EXAMPLE 3 with SKLEARN
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ONE-HOT ENCODING – Create binary columns for categoricals
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.

ONE-HOT ENCODING – Create binary columns for all categoricals

remove binary column
of the first category in the data
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.

ONE-HOT ENCODING – Create binary columns for all categoricals

remove binary column
of the first category in the data

…
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df

df2

EXAMPLE 3 with SKLEARN – Create binary columns for categoricals
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.

EXAMPLE 3 with SKLEARN – Create binary columns for categoricals

when style = 1 all other styles are equal to 0
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.

EXAMPLE 3 with SKLEARN – Get the Regression model

split df2 into response and predictors
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.

EXAMPLE 3 with SKLEARN
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.

EXAMPLE 3 with SKLEARN – Display regression coefficients in a dataframe df3
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EXAMPLE 3 with SKLEARN - PREDICTION
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EXAMPLE 3 with SKLEARN - PREDICTION


