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Logistic Regression 

Logistic Regression models 
are used with classification problems 

when the response has two categories

These are called binary classification problems 
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Logistic Regression 

Preparation
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• Odds of random event

• Indicator random variable

• Bernoulli random variable

• Logistic distribution function
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Logistic regression - Preparation

• Odds of random event

• Indicator random variable

• Bernoulli random variable

• Logistic distribution function

discrete
random variables

continuous
random variable



Cesar Acosta Ph.D.

Analytics

Odds of a random event 

A random event ‘A’ may be observed with probability p
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Odds of a random event 

A random event ‘A’ may be observed with probability p

The odds of event A

    Odds [A]  = 

how much likely is that A occurs
than it is that A does not occur
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Odds of a random event - Example 

Assume that 2/3 of voters  are in favor of candidate A
    and 1/3 in favor of candidate B
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Odds of a random event - Example 

Assume that 2/3 of voters  are in favor of candidate A
    and 1/3 in favor of candidate B
The odds of candidate A

 Odds [A]  = 
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Odds of a random event - Example 

Assume that 2/3 of voters  are in favor of candidate A
    and 1/3 in favor of candidate B
The odds of candidate A

 Odds [A]  = 

The probability of voting for A is twice
the probability of voting for other candidate
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Odds of a random event - Example 

Assume that 2/3 of voters  are in favor of candidate A
    and 1/3 in favor of candidate B
The odds of candidate A

 Odds [A]  = 

The odds of candidate A are 2-to-1
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INDICATOR of a random event 

Definition:   The indicator r.v. of event A has pdf 

   1 if event A occurs
   0 otherwise

where P[A] = p
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INDICATOR RANDOM VARIABLE

Definition:   The indicator r.v. of event A has pdf 

   1 with probability P[A] = p
   0 otherwise
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BERNOULLI random variable 

Definition:   A r.v. Y is called Bernoulli if its pdf is

   1 with probability      p
   0 with probability  1-p

P[Y = 1] = p  The odds of  y being equal to 1 is

     Odds [Y = 1]  = 
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BERNOULLI random variable 

Definition:   A r.v. Y is called Bernoulli if its pdf is

   1 with probability      p
   0 with probability  1-p

  E[Y] = 1 P[Y=1] + 0 P[Y=0]
          = 1 p   + 0   (1-p ) 
          = p
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BERNOULLI random variable 

Definition:   A r.v. Y is called Bernoulli if its pdf is

   1 with probability      p
   0 with probability  1-p

   E[Y] = P[Y = 1]



Cesar Acosta Ph.D.

Analytics

BERNOULLI random variable 

Definition:   A r.v. Y is called Bernoulli if its pdf is

  P[Y = y] = p y (1-p ) 1-y   y = 0,1
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BERNOULLI random variable  - Example

A Bernoulli r.v. is defined for customer gender as

   1 if customer is male      wp. p
   0 if customer is female  wp. 1-p
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BERNOULLI random variable  - Example

A Bernoulli r.v. is defined for customer gender as

   1 if category male    wp.     p
   0 if category female   wp. 1-p

     the odds of a
     male customer
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BERNOULLI random variable  - Example

A Bernoulli r.v. is defined for customer gender as

   1 if category male    wp.     p
   0 if category female   wp. 1-p

     how much likely is a 
     customer male   
     than female
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Bernoulli probability function 

1 wp. 0.80
 0 wp. 0.20

   f(y) = P[Y = y] 
 = 0.8 y 0.2 1-y 

 y = 0,1

category 0    category 1

y

0.80

0.20
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LOGISTIC RANDOM VARIABLE

A continuous random variable X is called Logistic if 

pdf

cdf
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Logistic distributions (cdf) - 𝛽1 positive

x
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Logistic function - 𝛽1 negative

.
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Logistic distributions (cdf) - 𝛽1 positive

x
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Logistic Regression 

Introduction
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EXAMPLE

Predict if an English citizen agrees with Brexit

X: years of working experience
Y: Agrees (A) 
 Disagrees (D)

X Y

33 A

27 A

12 D

41 A

.

.

19 D
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Logistic Regression 

Predict if an English citizen agrees with Brexit

X: years of working experience
Y: category 1    (agrees)
 category 0    (disagrees)

X Y

33 1

27 1

12 0

41 1

.

.

19 0
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Scatterplot

x
category 1

category 0

Y is a 
Bernoulli 
random 
variable

X Y

33 1

27 1

12 0

41 1

.

.

19 0

(years of experience)
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Scatterplot

x
category 1

category 0

Pattern?

(years of experience)
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Logistic regression

Is there a relation between  Y  and  X?
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Scatterplot

x
category 1

category 0

Does P[Y=1] 
increase 
with x ?

P[Y=1]

Y=1

Y=0

(years of experience)
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Is there a relation between  Y  and  X?

x
category 1

category 0

Y=1

Y=0

(years of experience)

P[Y=1]

Logistic
Regression 
function
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Logistic regression

x

P[Y=1]

category 1

category 0

Logistic curve 
shows that 
𝜋 =  P[Y=1] 
changes 
with X

At each 
x-value 
there 
exists a 
Bernoulli 
random 
variable Y

Y=1

Y=0

(years of experience)

P[Y=1]
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Logistic regression

x
P[Y=1]

category 1

category 0

(years of experience)

Logistic 
regression 
estimates the 
probability 
that a person 
with certain 
experience is 
in category 1

Logistic
Regression 
function = 
Logistic cdf
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Bernoulli probability function 

1 wp.  𝜋 = 0.80
 0 wp.  1-𝜋 = 0.20

   
Suppose that 𝜋 = P[Y=1] 
changes with
variable X
(not shown here) 

category 0    category 1

y

𝜋 = 0.80

0.20
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Bernoulli probability functions at 3 different x-values

 x = 1   x = 2.5   x = 4

                     𝜋  = 0.8

𝜋  = 0.5

𝜋  = 0.2
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Logistic regression

• There is a pdf for Y at each 
value of X

• As X increases the pdf 
changes

X

𝜋 = 
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Logistic regression

• There is a pdf for Y at each 
value of X

• As X increases the pdf 
changes

f(y
)

X

𝜋 = 
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Logistic regression

• There is a pdf for Y at each 
value of X

• As X increases the pdf 
changes

• For X=1 the pdf of Y is

  0.8

 0.2

f(y
)

X

X=1

𝜋 = 
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Logistic regression

• There is a pdf for Y at each 
value of X

• As X increases the pdf 
changes

• For X=4 the pdf of Y is

 0.8

  0.2 

f(y
)

X=4

X

𝜋 = 
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Logistic regression

Is there a relation between P[Y=1] and X?
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Logistic regression

P[Y=1]

category 1

category 0

(years)

This curve 
shows 
𝜋 = P[Y=1]
when X 
changes
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Logistic regression

P[Y=1]

When x is small, P[Y=1] is small, so most observations are in category 0

category 1

category 0
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Logistic regression

When x is large, P[Y=1] is large, so most observations are in category 1

P[Y=1]

category 1

category 0
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Logistic regression

Is there a relation between E[Y] and X?
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LINEAR REGRESSION function

linear regression function

E[Y] = β0 + β1x
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LOGISTIC REGRESSION function

x

(years)

Logistic regression 
function

E[Y]

category 1

category 0
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Simple Logistic Regression
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Logistic Regression 

Logistic Regression models 
estimate the probability that a data point 

belongs to category  [Y=1]
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LOGISTIC REGRESSION ASSUMPTION

As x increases, p  varies along the logistic cdf
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LOGISTIC REGRESSION MODEL

.

logistic regression function
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LOGISTIC REGRESSION MODELS - EQUIVALENT

.

logistic regression function

logit regression function

log-odds or 
logit of 𝜋
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Logistic regression Assumption

This regression relation between pi and xi 
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Logistic regression Assumption

This regression relation between pi and xi 

is estimated by
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PREDICTIONS

• P[Y=1] is predicted with

• The category of Y is predicted by the following rule

• if     predict
•      predict

The cutoff may be different
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Logistic regression Assumptions

• Linear regression assumptions do not apply

• p changes with x 
• As x increases, p changes, moving along an S shape 

curve (the logistic cdf is the S shape curve)

• There is a Y Bernoulli r.v. at each different x

• For different X, the Y variables are independent
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PREDICTIONS

• Probabilities are predicted by

• How are (b0 ,b1) found?
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LOGISTIC REGRESSION MODELS - EQUIVALENT

.

cannot use OLS
to find b0 and b1

instead we use the
maximum likelihood method
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PARAMETERS ESTIMATION

Predict if an English citizen agrees with Brexit
 Xi : years of working experience
  1 with probability      pi
  0 with probability  1-pi

assume that 
𝜋 exists but 

it is unknown
↓
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PARAMETERS ESTIMATION

Predict if an English citizen agrees with Brexit
 Xi : years of working experience
  1 with probability      pi
  0 with probability  1-pi 

Assume that y is Bernoulli r.v.

P[Y = y] = p y (1-p ) 1-y y = 0,1

assume that 
𝜋 exists but 

it is unknown
↓
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PARAMETERS ESTIMATION

Predict if an English citizen agrees with Brexit
 Xi : years of working experience
  1 with probability      pi
  0 with probability  1-pi 

Then the likelihood of first citizen is

P[ Y1 = y1 ] = 

assume that 
𝜋 exists but 

it is unknown
↓
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PARAMETERS ESTIMATION

The likelihood of each citizen’s category is
assume that 
𝜋 exists but 

it is unknown
↓

y1, y2, …,yn = 0 or 1
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PARAMETERS ESTIMATION

The likelihood of all of them is given by the joint pdf
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PARAMETERS ESTIMATION

The joint pdf and the likelihood
function of (y1,y2,… yn)
𝜋1, 𝜋2,… 𝜋n are known

function of (𝜋1, 𝜋2,… 𝜋n)
y1,y2,… yn  are known

likelihood function →

pdf →
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LIKELIHOOD FUNCTION

.
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LIKELIHOOD FUNCTION

.

Method of MLE
Find b0 and b1 such that 
L(b0,b1) is 
as large as possible



Cesar Acosta Ph.D.

Analytics

LIKELIHOOD FUNCTION

likelihood function

log-likelihood function
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Finally, find b0 and b1 that maximize  log L(b0,b1 )
using a numerical procedure (i.e., gradient search)

log LIKELIHOOD FUNCTION
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Find b0 and b1 that maximize log L

.
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Find b0 and b1 that maximize log L

.
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Logistic regression

What is the meaning of b1?



Cesar Acosta Ph.D.

Analytics

Linear regression

What is the meaning of b1?
In linear regression, b1 is the slope. 
It means that if X increases one unit 

then Y changes b1 units
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LOGISTIC REGRESSION

What is the meaning of b1?

• In logistic regression the meaning of b1 is 
related to the Odds of Y=1

• [Odds of  category Y=1]  = 
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What is b1 ?

Since pi changes with xi,  then the odds changes with xi 

   probability  odds for category 1

when X = x1  P[Y=1] = p1 

when X = x2  P[Y=1] = p2 
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Logistic regression -parameters

P[Y = 1]      is a function of x
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Logistic regression -parameters

.

x
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Logistic regression -parameters

x
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Logistic regression -parameters
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Logistic regression -parameters

     odds    is a function of x
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  the odds as a function of x

Logistic regression -parameters
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  the odds as a function of x

 the log odds is a linear function of x

Logistic regression -parameters
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Logistic regression -parameters

Compare the odds, 
when X changes from x1 to x2
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Logistic regression -parameters

Compare the odds, 
when X changes from x1 to x2 

odds ratio
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Compare the odds, 
when X changes from x1 to x2 

 odds ratio →

If   x2 - x1 = 1    

Logistic regression -parameters
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Meaning of b1

if X increases one unit, then 

• the odds-ratio changes       units

• the log odds changes  b1  units
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Logistic regression with sklearn

y_proba  =  model1.predict_proba(X)   y_proba is the probability that  y=1
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Simple logistic regression
Example
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SIMPLE LOGISTIC REGRESSION - EXAMPLE

• File task.csv has data of 25 data analysts
• Each one was given the same amount of time to 

complete a data science project
• The data shows the analyst experience (in months)
• It also shows if the project was  successfully completed 

(Y = 1) or not (Y = 0)
• It is of interest to predict if a new analyst is able to 

successfully complete such a project given his 
experience (in months)
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SIMPLE LOGISTIC REGRESSION - EXAMPLE

• Predict the success of a data science project based on the 
experience of the analyst

• Interpret the estimated b1
• Predict probability of success of an analyst with 22 months 

of experience
• Plot the fitted logistic curve along with the scatterplot of the 

response and the predictor 
• Find the error rate on the entire data set 
• Use holdout cross validation (70% of train set) to estimate 

the test error rate. 
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SIMPLE LOGISTIC REGRESSION - EXAMPLE

.
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SIMPLE LOGISTIC REGRESSION - EXAMPLE

.

predict Success using 
Experience as predictor
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SIMPLE LOGISTIC REGRESSION - EXAMPLE

.
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SIMPLE LOGISTIC REGRESSION MODEL

.

b1
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SIMPLE LOGISTIC REGRESSION - PREDICTION

.

P[Y=1]

[Y=1]
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SIMPLE LOGISTIC REGRESSION – INTERPRET b1

.

Find
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SIMPLE LOGISTIC REGRESSION – PLOT LOGISTIC CURVE

.

get probability of success only
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SIMPLE LOGISTIC REGRESSION – SCATTERPLOT AND LOGISTIC CURVE

.
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SIMPLE LOGISTIC REGRESSION – PREDICT CATEGORIES

.
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SIMPLE LOGISTIC REGRESSION – CROSSTABULATION FOR PREDICTIONS

.
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HOLDOUT CROSS VALIDATION

.
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HOLDOUT CROSS VALIDATION

.

test error rate = 2/8 = 0.25
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Multiple logistic Regression
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Simple Logistic regression

As x increases, p  varies along the logistic cdf

where x is the predictor (feature)
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Simple Logistic regression function

x
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Multiple Logistic regression – TWO PREDICTORS

p  varies along the surface

where x1 and x2  are the predictors

p  changes as x1 and x2  change
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Multiple Logistic regression – Two predictors

p  varies along the surface

X2
X1
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Multiple Logistic regression –  n predictors

p  varies along the surface

where x1 , x2 ,… xn are numerical and/or categorical



Cesar Acosta Ph.D.

Analytics

Multinomial Regression models 
are used with classification problems 

when the response has 
more than two categories 
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Logistic regression

Example
Cancer data
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Cancer Data - EXAMPLE

• The Cancer data from sklearn contains data from 569 patients.
• It includes 30 lab measurements associated with breast cancer 

tumors. These are the predictors.
• Some patients have cancer but not all. The target np.array 

identifies these patients.
• Build a Logistic Regression model to predict whether new patients 

have cancer.
• Compare predictions not scaling or scaling the lab measurements
• find the test accuracy rate using Holdout and K-fold Cross 

validation
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Cancer Data - NOTES

• Logistic regression does not have hyperparameters
• Validation sets are not needed
• All regression models may improve by scaling the data
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Cancer Data

Y
30 measurements
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Logistic Regression - EXAMPLE

.
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Cancer Data

Y
X
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Logistic Regression - EXAMPLE

.
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Logistic Regression - EXAMPLE

.
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Holdout cross validation
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SCALING

All predictors with values in the same range/scale
Benefits

• Improve prediction accuracy
• Reduce computer time
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SCALING

Sklearn options for scaling X

• MinMaxScaler( )  to make the values of all features in [0,1]
    by substracting the column Min
    and dividing by the column range

• StandardScaler( )  to make the values of all features 
• (with mean 0 and, standard deviation 1)

    by substracting the column mean
    and dividing by the column std. deviation
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Logistic Regression – Holdout Cross Validation with scaling

.

1. Find mean and standard deviation from each column in the train set

2. Scale train set and test set 
    (using the mean and stardard deviation found from the train set)
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Logistic Regression – Holdout Cross Validation

.
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Logistic Regression – Split dataset for Holdout CV

.

fit the scaler on the train set

create the scaler
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Logistic Regression – predictors Ranges

.
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Logistic Regression – SCALED predictors in the train set

.
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Logistic Regression – SCALED predictors in the test set

.
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Logistic Regression – Holdout Cross Validation

.

scaling 
the data

not 
scaling 
the data
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Holdout Cross Validation – scaling-             

.

Logistic Regression

KNN (K=2)
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K-fold cross validation
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Logistic Regression – Stratified K-Fold Cross validation   (No scaling)

.

← for classification problems

← Use all data set X,y
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k-fold Cross Validation with scaling

.

fit scaler to train set 1. Then scale train set 1 and test set 1

fit scaler to train set 2. Then scale train set 2 and test set 2

fit scaler to train set 3. Then scale train set 3 and test set 3

…

…

fit scaler to train set k. Then scale train set k and test set k

1

2

3

k

1

2

3

k

2

3

• At each fold fit the scaler to the corresponding train set
• Then scale the train and test sets for that fold
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Logistic Regression – Stratified K-Fold Cross validation   (Scaling)

.
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k-Fold Cross Validation – scaling-             Logistic Regression vs KNN with best K

.
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Review
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LIBRARIES

.
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HOLDOUT CROSS VALIDATION

.

split

scale

train and
test the
model
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K-Fold CROSS VALIDATION – SCALING WITHIN EACH FOLD

.


