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OVERVIEW

• Norm of a vector
• Linear Regression Loss function
• Ridge and LASSO regression
• Example: Regression with regularization
• Logistic Regression Loss function
• Example: Logistic regression with regularization
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INTRODUCTION

Regression models with regularization

• Ridge regression  (L2 regularization)

• LASSO regression (L1 regularization)

• Elastic net regression
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Shrinkage Methods

Norm of a Vector
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Shrinkage Methods

Norm of a vector  ➝  a measure of the length of a vector

Vector  b’ = [ b1,…,bm ]
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Shrinkage Methods

Norm of a vector a measure of the length of a vector

Vector  b’ = [3,2]

l2

l1

(3,2)
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Ridge and LASSO
Regression Models
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Linear Regression loss function (sum of squared errors) 

LOSS FUNCTION = COST FUNCTION

Find b0,…, bp 
that minimize SSE
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LOSS FUNCTIONS

Linear Regression loss function 

Ridge Regression loss function 

This term prevents 
large b1,…, bp 

penalty

Find b0,…, bp 
that minimize SSE
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Ridge Regression loss function

• a is the regularization parameter
• If a = 0 (no regularization)

RIDGE REGRESSION
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RIDGE REGRESSION

Ridge Regression model

loss function

 with solution 
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LASSO Regression model

loss function

• This loss function prevents large regression coefficients
• If a is large, some regression coefficients are equal to zero
•                   resulting in a model with less predictors

LASSO REGRESSION
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RIDGE AND LASSO LOSS FUNCTIONS

.



Cesar Acosta Ph.D.

Analytics

Example
Baseball Players
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Shrinkage Methods

• The Hitters.csv file includes data about 
baseball players, such as their salary and 19 
player’s performance measures

• To predict the player’s salary we will fit 
regression models with regularization

• We start by removing all rows with missing 
values in column Salary
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Shrinkage Methods

• Fit 100 ridge regression models with  10-2 < a < 1010

• Show how the coefficients b1,b2…,b19 shrink when a increases
• Find the best value for a using

• holdout cross validation
• 5-fold cross validation

• Use the best a value to fit a ridge regression model 
• Compute the test MSE
• Repeat with LASSO regression
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Ridge Regression

.
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Ridge Regression

.

first 16 columns
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Ridge Regression

.

Y

last 15 columns



Cesar Acosta Ph.D.

Analytics

Ridge Regression

.



Cesar Acosta Ph.D.

Analytics

Ridge Regression

.
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Ridge Regression – One-hot Encoding with pd.get_dummies( )

.
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Ridge Regression – Find 100 values in the interval 0.01 < a < 1010

.

split interval (10,-2) into 
100 subintervals

coefs is a list of 1D arrays (vectors)
The arrays have the regression coefficients
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Ridge Regression – Find 100 values in the interval 0.01 < a < 1010

.

split interval (10,-2) into 
100 subintervals
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Each row is a Ridge regression model with 19 beta coefficients

• DataFrame with 
ridge regression 
coefficients

predictors

100 rows x 19 columns
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Each row is a Ridge regression model with 19 beta coefficients

model 1

• DataFrame with 
ridge regression 
coefficients

predictors

100 rows x 19 columns

model 100
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Each row is a Ridge regression model with 19 beta coefficients

a very large

a very small

• DataFrame with 
ridge regression 
coefficients

predictors

100 rows x 19 columns



Cesar Acosta Ph.D.

Analytics

Each row is a Ridge regression model with 19 beta coefficients

a very large

• DataFrame with 
ridge regression 
coefficients

predictors

100 rows x 19 columns
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Each row is a Ridge regression model with 19 beta coefficients

• DataFrame with 
ridge regression 
coefficients

• How does each 
ridge regression 
coefficient 
changes with 
alpha?

predictors

100 rows x 19 columns

19
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Ridge Regression

log-scalea increases

There are 19 curves 
one for each 
predictor

Each curve shows 
how the value of a 
ridge regression 
coefficient changes 
when a increases
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Ridge Regression

There are 19 curves 
one for each 
predictor

Each curve shows 
how the value of a 
ridge regression 
coefficient changes 
when a increases

All coefficients 
shrink to zero as 
alpha increases

OLS (a = 0) overshrinking
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Holdout Cross Validation
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Ridge Regression – Holdout Cross Validation with fixed alpha

.

Huge alpha makes coefficients very close to zero
which increases MSPE
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Ridge Regression – Holdout Cross Validation – Comparing test MSE

.

Huge alpha makes coefficients very close to zero
which increases MSPE

Linear Regression (alpha = 0)
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Ridge Regression – Holdout Cross Validation searching for alpha
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Ridge Regression – Holdout Cross Validation searching for alpha

.
 .
 .

0.000000     116690.468566      OLS



Cesar Acosta Ph.D.

Analytics

Ridge Regression – Holdout Cross Validation searching for alpha
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Ridge Regression – Validation Approach

103069.74
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Ridge Regression Models better than OLS

better than OLS
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Ridge Regression best Model

78821.06

best a = 75.64
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Ridge Regression – Test MSE from Holdout CV

← Validation MSE

← Test MSE
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5-fold Cross Validation
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Ridge Regression 5-fold cross validation to find best alpha

.
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Ridge Regression 5-fold cross validation to find best alpha

.

← Test MSE
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PREDICTION

.
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PREDICTION

.

Predicted Salary →

Actual Salary → 


