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Overview

• Imbalance in Classification problems
• Confusion matrix – Positive Accuracy
• New Metrics (for class imbalance problems)
• ROC Curve
• Area-under-the-Curve (AUC)
• Example – Insurance Data
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Class Imbalance

    2 categories labeled as
Classification  positive and negative
Problems   (binary classification)

    3+ categories
    (multiclass classification)
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Class Imbalance – 2 categories

•Response with 2 categories
§ Positive 
§ Negative 

• It is more important to accurately predict 
the Positive category
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Class Imbalance - Confusion Matrix

Square matrix showing

• n. true observations per category (rows)

• n. predicted obs per category (cols)
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Class Imbalance

A balanced dataset
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Class Imbalance

Let us build a classification model 
to predict these categories
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Class Imbalance – Confusion Matrix

We use the model to predict the categories
and fill the confusion matrix
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Class Imbalance – Confusion Matrix

Main diagonal will show accurate predictions 
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Class Imbalance – Confusion Matrix

Off-main diagonal values will show incorrect 
predictions (misclassifications)
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Class Imbalance – Confusion Matrix

Note that we show True categories in the 
rows and predictions in the columns
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Class Imbalance - Example

Model correctly predicted 90 of 100 obs
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Class Imbalance - Example

Model correctly predicted 40 of 46 positives
(87% accurate rate for positive cases)
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Positives

54
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Class Imbalance - Example

• Cancer dataset with 120 patients

• Patients may have cancer (H) or not (DNH)

• Category of interest is H (Positive)

• Dataset has 15 patients with cancer
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Class Imbalance

15

This is an imbalanced dataset

87.5%

12.5%



Class Imbalance - Example

• Priority is to identify new patients with cancer 
to treat them as early as possible

• A classification model is built and the results 
are as follows
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Class Imbalance – Confusion Matrix

 Accuracy rate is (102+6)/120 = 0.90

17

with cancer

with cancer



Class Imbalance – Confusion Matrix

But priority is to identify patients with cancer
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with cancer

with cancer

105
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Class Imbalance – Confusion Matrix

Model is able to identify 6 out of 15 cancer 
patients. Positive accuracy is 6/15 = 0.40
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with cancer

with cancer

105

15



Class Imbalance – Confusion Matrix

  Total accuracy rate is 108/120 = 0.90
  Positive accuracy rate is  6/15 = 0.40
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Class Imbalance - Example

• Priority is to identify new patients with cancer 
to treat them as early as possible

• A classification model is built and the results 
are as follows

• A Naive approach is to predict patients as 
Negative, always
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Class Imbalance

22

An imbalanced dataset

87.5%

12.5%

120



Class Imbalance – Confusion Matrix

  Accuracy rate is 105/120 = 0.875
  Positive accuracy is 0/15 = 0
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with cancer

with cancer

105

15

105

15

0

0



Counts – Positives, Negatives
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Class Imbalance – New Metrics
We need new metrics for the predictions on 
classification problems with class imbalance

• True Positive, True Negative
• False Positive, False Negative
• False Positive rate (FPR), True Positive 

rate (TPR)
• ROC, AUC
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Class Imbalance – Cancer example
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Counts



Class Imbalance - Confusion Matrix
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Counts



Class Imbalance - Confusion Matrix
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• A False is an incorrect prediction



Class Imbalance – New Metrics
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• A False Positive   is an incorrect Positive prediction
• A False is an incorrect prediction

prediction



Class Imbalance – New Metrics
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• A False Positive   is an incorrect Positive prediction
• A False Negative is an incorrect Negative prediction

• A False is an incorrect prediction

predictionprediction



Class Imbalance – Example

Take a Covid test

• You get a negative result when in fact you 
have Covid    (False Negative)

• You get a positive result when in fact you 
do not have Covid    (False Positive)

31



Rates - TPR and Precision
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Class Imbalance - Confusion Matrix
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Counts



Class Imbalance - Confusion Matrix
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Short notation



Precision

How accurate are the positive predictions?
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Positive
Predictions

Positive 
Predictions



Precision

How accurate are the positive predictions?
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Positive
Predictions



True Positive Rate (TPR)

         
       

How accurate is model when predicting positive cases ?
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Positives
Positives 

Cases



True Positive Rate (TPR)

         
       

How accurate is model when predicting positive cases ?
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PositivesCases



Class Imbalance

Sometimes we want

• Precision to be as large as possible

Other times we want
• True Positive Rate to be as large as possible

It depends on the problem

39



Class Imbalance – Cancer Example

• Dataset with some patients with a tumor

• A classification model is used to predict if 
a new patient has cancer

• Priority is to identify patients with cancer to 
treat them as early as possible

• So, let the cancer patients be the positives
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Class Imbalance – Cancer Example
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PREDICTION

TRUE

FN    TPPositives

PositivesNegatives

Negatives True Positive Rate
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Class Imbalance – Cancer Example
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PREDICTION

TRUE

Wrong prediction

Want to keep the False Negatives as small as possible

   TP



.

Class Imbalance – Cancer Example
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PREDICTION

TRUE

Keep FN small

Want the True Positive Rate as high as possible

   TP



Class Imbalance – New Drug Example

• A pharmaceutical company wants to know if 
its new drug is able to cure a disease

• A classification model is used to predict if the 
drug is effective or not (binary classification)

• Priority is to identify cases when the drug is 
effective

• Let ’drug is effective’ be the positive case
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Class Imbalance – New Drug Example
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PREDICTION

TRUE

FN    TP

FP

TP
Wrong prediction

Want to keep the False Positives as small as possible

Predict that drug is
effective when in 
fact it is not
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Class Imbalance – New Drug Example
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PREDICTION

TRUE

FN    TP
Keep it low

Want the Precision as high as possible

TP



More Rates
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Confusion Matrix - Rates
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Rates

TNR   FPR

FNR   TPR



True Negative Rate
      

TNR is rate that negatives are accurately predicted
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Positives

Negatives TN Negatives



True Positive Rate
      

TPR is rate that  positives are accurately predicted
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Positives

Negatives

TP
Positives 



Class Imbalance
      

TNR is rate that negatives are accurately predicted
TPR is rate that  positives are accurately predicted
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Positives

Negatives



Class Imbalance

       

TNR = Specificity
TPR = Sensitivity
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False Positive Rate

            

 
       

FPR is the fraction of negatives incorrectly predicted

53

Positive
Predictions

NegativesNegatives



False Negative Rate

           

 
       

FNR is the fraction of positives predicted incorrectly
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Negative
Predictions

Positives 



Class Imbalance – Row complements

FPR      + TNR       = 1

% negatives   % negatives
incorrectly predicted  correctly predicted
     Specificity

TPR    + FNR       = 1

% positives    % positives
correctly predicted  incorrectly predicted
Sensitivity or Recall
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ROC Curve
(Receiver Operating Characteristic Curve)
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ROC Curve

FPR      + TNR       = 1

% negatives   % negatives
incorrectly predicted  correctly predicted
     Specificity

TPR    + FNR       = 1

% positives    % positives
correctly predicted  incorrectly predicted
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ROC is a relation 
between Positive rates



ROC Curve

FPR      + TNR       = 1

% negatives   % negatives
incorrectly predicted  correctly predicted
     Specificity

TPR    + FNR       = 1

% positives    % positives
correctly predicted  incorrectly predicted
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Want 
model performance
to be here

FPR

TP
R



ROC Curve
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ROC Curve

TN, FN, FP, TP values change with the threshold
used in the classification model
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Receiver Operating Characteristic (ROC) Curve

.
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Points that result 
from different 
Threshold values

FPR

TP
R



Receiver Operating Characteristic (ROC) Curve

.
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TPR and FPR 
change with 
the threshold

FPR

TP
R



Receiver Operating Characteristic (ROC) Curve

.
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All predictions 
are perfect
FP = FN = 0

= 0

= 1

FPR

TP
R



Receiver Operating Characteristic (ROC) Curve

.
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All predictions 
are positives
TN = FN = 0

= 1

= 1

FPR

TP
R



Receiver Operating Characteristic (ROC) Curve

.
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All predictions 
are negatives
TP = FP = 0

= 0

= 0

FPR

TP
R



Receiver Operating Characteristic (ROC) Curve

.
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All predictions 
are positives
TN = FN = 0

All predictions 
are negatives
TP = FP = 0

All predictions 
are perfect
FP = FN = 0

TP
R

All predictions 
are wrong
TP = TN = 0



Receiver Operating Characteristic (ROC) Curve

.
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ROC curves of all 
classification models 
touch these 2 points



Receiver Operating Characteristic (ROC) Curve

.
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All predictions 
are perfect
FP = FN = 0

A good classification 
model has a ROC curve 
close to point A

A



Receiver Operating Characteristic (ROC) Curve

.
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All predictions 
are perfect
FP = FN = 0

A good classification model has 
the Area under the Curve (AUC) 
close to 1.0

A



Receiver Operating Characteristic (ROC) Curve

.
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Area under the Curve (AUC)
.
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• A and B are ROC 
curves from two 
classification models

• Model A is better 
classifier than  
Model B

• The AUC of model A 
is larger than the 
AUC of model B



Example – Insurance data
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Example – Caravan Insurance Data

• Dataset with n = 5822 customer records
• Each customer has 85 features
• socio-demographic (variables 1-43) 
• product ownership  (variables 44-86) 

• Variable 86 (Purchase) is the response. 
• It indicates whether the customer purchased 

the Caravan insurance policy
• About 6% of customers purchased the 

insurance (94% did not)
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Example – Caravan Insurance Data
.
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Example – Caravan column names
.
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Example – Caravan Insurance Data
.
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← Only 6% purchased
the insurance



Example – KNN model
.
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Example – KNN
.
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1.0

0

0

← Accuracy Rate for positive category

← 0.50 is the threshold (default)



Example – KNN
.
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← 0.050 threshold (arbitrarily selected)

changing the threshold
results in new 
confusion matrix and 
FN, TP, FP, TN values



Example – KNN
.
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← New accuracy rate for positive category

← 0.050 threshold (arbitrarily selected)

model predicts that 773 customers would 
buy the insurance (predictions = 1)
but they actually did not (y_test = 0)



Example – ROC Curve for KNN model

.
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Example – ROC Curve and AUC
.
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Example – Find best threshold
.
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Example – Find best threshold
.
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Example – Logistic Regression
.
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Example – Logistic Regression best threshold

.
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Example – Logistic Regression
.
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Logistic Regression ROC Curve 
above 
KNN ROC Curve



Example – Logistic Regression
.
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Logistic Regression ROC Curve 
above 
KNN ROC Curve



Example – AUC Comparison
.
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Example – ROC Curve

• The ROC curve is a tool to find the best threshold 
(cutoff) value

• We want a threshold where TPR is large while  
the FPR is small

• To find the best threshold value find all fpr,tpr for 
a large number of thresholds using 

• fpr, tpr, thresholds = roc_curve(y_test, probabs)

• The best point on the ROC Curve is found at row 
idx using  idx = np.argmax(tpr - fpr)
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